共查询到20条相似文献,搜索用时 8 毫秒
1.
Bao Dong Chen Wei Tang Chuan He Chao Ran Deng Lei Jing Yang Lai Pan Zhu Jian Chen Jia Jia Shao Long Liu Zhong Lin Wang 《Materials Today》2018,21(1):88-97
Due to the natural working mechanism of triboelectric nanogenerators (TENGs), potential energy stored by elastic materials may not be effectively converted into electric power, post mechanical triggering. Here, we report a practical bionic-jellyfish triboelectric nanogenerator (bjTENG) with polymeric thin film as the triboelectric material, which is shape-adaptive, with a hermetic package and a unique elastic resilience structure, similar to the behavior of a jellyfish. The charge separation in the elastic resilience of this bionic-structure is based on the liquid pressure-induced contact-separation of the triboelectric layers. On the basis of the conjunction of the triboelectrification and the electrostatic induction, a sustainable and enhanced output performance of 143?V, 11.8?mA/m2 and 22.1?μC/m2 under a low frequency of 0.75?Hz and at a water depth of 60?cm is produced, which can be used to supply power for dozens of green LEDs or a temperature sensor directly. More significantly, bjTENG is believed to be a priority technology which is attributable to its highly sensitivity, portability, and suitability for continuous detection of water level and fluctuation. Furthermore, a wireless self-powered fluctuation sensor early-warning system, which provides exact and wireless monitoring of fluctuation of a liquid surface, is also successfully developed. 相似文献
2.
Keystroke dynamics enabled authentication and identification using triboelectric nanogenerator array
Changsheng Wu Wenbo Ding Ruiyuan Liu Jiyu Wang Aurelia C. Wang Jie Wang Shengming Li Yunlong Zi Zhong Lin Wang 《Materials Today》2018,21(3):216-222
Cyber security has become a serious concern as the internet penetrates every corner of our life over the last two decades. The rapidly developing human–machine interfacing calls for an effective and continuous authentication solution. Herein, we developed a two-factor, pressure-enhanced keystroke-dynamics-based security system that is capable of authenticating and even identifying users through their unique typing behavior. The system consists of a rationally designed triboelectric keystroke device that converts typing motions into analog electrical signals, and a support vector machine (SVM) algorithm-based software platform for user classification. This unconventional keystroke device is self-powered, stretchable and water/dust proof, which makes it highly mobile and applicable to versatile working environments. The promising application of this novel system in the financial and computing industry can push cyber security to the next level, where leaked passwords would possibly be of no concern. 相似文献
3.
Jing Qian Min Shen Shan Zhou Chi-Ta Lee Ming Zhao Zhiheng Lyu Zachary D. Hood Madeline Vara Kyle D. Gilroy Kun Wang Younan Xia 《Materials Today》2018,21(8):834-844
Engineering the shape and thus surface structure of Pt nanocrystals is an effective strategy for optimizing their catalytic activities toward various reactions. However, different protocols are typically used to produce Pt nanocrystals with distinctive shapes, making it difficult to directly compare their catalytic activities owing to the complication of surface contamination. Here we demonstrate that Pt nanocrystals with a variety of shapes, including those enclosed with low- or high-index facets, can be synthesized using the same protocol by simply adjusting the concentration of reducing agent and/or the reaction time. Specifically, when the reducing agent was used at a relatively low concentration, Pt truncated cubes, cuboctahedrons, truncated octahedrons, and octahedrons were produced sequentially upon the increase in reaction time. When 67% more reducing agent was used, Pt cubes and concave cubes were obtained consecutively as the reaction time was prolonged. Our quantitative analysis suggests that the diversity of shape and difference in size can be resulted from the difference in reduction kinetics. In evaluating their structure–activity relationship for oxygen reduction, it was established that the high-index facets on Pt concave cubes possessed a specific activity of 6.3 and 1.3 times greater than those of Pt cubes and octahedrons exposed by {1?0?0} and {1?1?1} facets, respectively. This work not only offers a general method for the synthesis of Pt nanocrystals having diverse shapes and thus different types of facets but also highlights the significance of reduction kinetics in controlling the structure evolution of other metal nanocrystals. 相似文献
4.
5.
Biwei Deng Rong Xu Kejie Zhao Yongfeng Lu Sabyasachi Ganguli Gary J. Cheng 《Materials Today》2018,21(5):467-474
Manufacturing ultralight and mechanical reliable materials has been a long-time challenge. Ceramic-based mechanical metamaterials provide significant opportunities to reverse their brittle nature and unstable mechanical properties and have great potential as strong, ultralight, and ultrastiff materials. However, the failure of ceramics nanolattice and degradation of strength/modulus with decreasing density are caused by buckling of the struts and failure of the nodes within the nanolattices, especially during cyclic loading. Here, we explore a new class of 3D ceramic-based metamaterials with a high strength–density ratio, stiffness, recoverability, cyclability, and optimal scaling factor. Deformation mode of the fabricated nanolattices has been engineered through the unique material design and architecture tailoring. Bending-dominated hollow nanolattice (B-H-Lattice) structure is employed to take advantages of its flexibility, while a few nanometers of carbonized mussel-inspired bio-polymer (C-PDA) is coherently deposited on ceramics’ nanolayer to enable non-buckling struts and bendable nodes during deformation, resulting in reliable mechanical properties and outperforming the current bending-dominated lattices (B-Lattices) and carbon-based cellulose materials. Meanwhile, the structure has comparable stiffness to stretching-dominated lattices (S-Lattices) while with better cyclability and reliability. The B-H-Lattices exhibit high specific stiffness (>106?Pa·kg?1·m?3), low-density (~30?kg/m3), buckling-free recovery at 55% strain, and stable cyclic loading behavior under up to 15% strain. As one of the B-Lattices, the modulus scaling factor reaches 1.27, which is lowest among current B-Lattices. This study suggests that non-buckling behavior and reliable nodes are the key factors that contribute to the outstanding mechanical performance of nanolattice materials. A new concept of engineering the internal deformation behavior of mechanical metamaterial is provided to optimize their mechanical properties in real service conditions. 相似文献
6.
Emily Reiser Evans Pallavi Bugga Vishwaratn Asthana Rebekah Drezek 《Materials Today》2018,21(6):673-685
Cancer immunotherapy, or the utilization of the body’s immune system to attack tumor cells, has gained prominence over the past few decades as a viable cancer treatment strategy. Recently approved immunotherapeutics have conferred remission upon patients with previously bleak outcomes and have expanded the number of tools available to treat cancer. Nanoparticles – including polymeric, liposomal, and metallic formulations – naturally traffic to the spleen and lymph organs and the relevant immune cells therein, making them good candidates for delivery of immunotherapeutic agents. Metallic nanoparticle formulations, in particular, are advantageous because of their potential for dense surface functionalization and their capability for optical or heat-based therapeutic methods. Many research groups have investigated the potential of nanoparticle-mediated delivery platforms to improve the efficacy of immunotherapies. Despite the significant preclinical successes demonstrated by many of these platforms over the last twenty years, only a few metallic nanoparticles have successfully entered clinical trials with none achieving FDA approval for cancer therapy. In this review, we will discuss preclinical research and clinical trials involving metallic nanoparticles (MNPs) for cancer immunotherapy applications and discuss the potential for clinical translation of MNPs. 相似文献
7.
8.
9.
Weijia Wang Mohammad Ramezani Aaro I. Väkeväinen Päivi Törmä Jaime Gómez Rivas Teri W. Odom 《Materials Today》2018,21(3):303-314
Metal nanoparticle arrays that support surface lattice resonances have emerged as an exciting platform for manipulating light–matter interactions at the nanoscale and enabling a diverse range of applications. Their recent prominence can be attributed to a combination of desirable photonic and plasmonic attributes: high electromagnetic field enhancements extended over large volumes with long-lived lifetimes. This Review will describe the design rules for achieving high-quality optical responses from metal nanoparticle arrays, nanofabrication advances that have enabled their production, and the theory that inspired their experimental realization. Rich fundamental insights will focus on weak and strong coupling with molecular excitons, as well as semiconductor excitons and the lattice resonances. Applications related to nanoscale lasing, solid-state lighting, and optical devices will be discussed. Finally, prospects and future open questions will be described. 相似文献
10.
Wenxiu Gao Raymond Brennan Yong Hu Manfred Wuttig Guoliang Yuan Eckhard Quandt Shenqiang Ren 《Materials Today》2018,21(7):771-784
Ferroic materials and multiferroics, characterized by their ferroic orders, provide an efficient route for the coupling control of magnetic, mechanical, and electrical subsystems in energy transduction, which aims at converting one form of energy into another. A surge of interest in the ferroic coupling effect has stemmed from its potential use as a new versatile route for energy transduction. Here, the recent progress on the use of (multi)ferroic materials is reviewed, with special emphasis on the fundamental mechanisms that dictate the energy transduction process, including piezoelectricity, pyroelectricity, electrocaloric, magnetostriction, magnetocaloric, elastocaloric, magnetoelectricity, and emerging spin-charge conversion. Research on energy transduction ferroic materials paves the way for ubiquitous energy harvesting through magneto-mechano-electric-thermal coupling mechanisms. Finally, a summary and the future prospective directions of this field are discussed. 相似文献
11.
Coal fly ash (CFA) catalyzed Fenton-like process was studied under microwave (MW) irradiation for the decolorization of Rhodamine B (RhB) wastewater. The physical-chemical properties of CFA were characterized, including the specific surface area, micromorphology, chemical and crystal components, and the distribution and chemical valence of metallic elements. The metallic oxidants in the CFA indicate CFA can work as Fenton-like catalyst and MW-absorbent simultaneously. The results reveal OH is more significant in the decolorization of RhB than HO2 and O2?. The generation of more OH in the MW-Fenton-like process (293–326 K) than that in the conventional heated Fenton-like process (326 K) reflects the function of hot spot effect and possible non-thermal effect of MW. Under the optimum condition ([H2O2] 2 mmol L?1, [CFA] 15 g L?1, pH 3, PMW 0.1 kW), the decolorization rate reaches 91.6% after 20 min. The intrinsic kinetic model of RhB decolorization is . The loss of catalytic metallic elements causes the decline of catalytic capacity of CFA. The energy consumption (4313.3 kW·h kg?1 RhB) is a limitation for the MW-Fenton-like process, which can be overcame by the safe application of nuclear energy. The intermediates and the path of RhB decolorization were detected and proposed, respectively. 相似文献
12.
Fluidized bed reactor is widely used in coal char-CO_2 gasification. In this work, the production of syngas by using a fluidized bed gasification technique was first investigated and then the effect of the produced syngas on the performance of the solid oxide fuel cell with a configuration of La_(0.4)Sr_(0.6) Co_(0.2)Fe_(0.7)Nb_(0.1)O_(3-δ)//La_(0.8)Sr_(0.2)Ga_(0.83)Mg_(0.17)O_(3-δ)//La_(0.4)Sr_(0.6) Co_(0.2)Fe_(0.7)Nb_(0.1)O_(3-δ)(LSCFN//LSGM//LSCFN)was studied. During the syngas production, we found that the volume fraction of CO increased with the increment of gasification temperature, and it reached a maximum value of 88.8%, corresponding to a composition of 0.76% H_2, 88.8% CO, and 10.44% CO_2, when the ratio of oxygen mass flow rate to that of coal char(MO2/Mchar) increased to 0.29. In the following utilization of the produced syngas in solid oxide fuel cells, it was found that the increasing CO volume fraction in the syngas results in a gradual increase of the peak power density of the LSCFN//LSGM//LSCFN cell. The maximum peak power density of 410 m W/cm~2 was achieved for the syngas produced at 0.29 of M_(O2)/M_(char). In the stability test, the cell voltage decreased by 4% at a constant current density of 0.475 A/cm~2 after 54 h when fueled with the syngas with the composition of 0.76% H2, 88.8% CO, and 10.44% CO_2.It reveals that a carbon deposition with the content of 13.66% in the anode is attributed to the cell performance degradation. 相似文献
13.
Feixiang Wu Chenglong Zhao Shuangqiang Chen Yaxiang Lu Yanglong Hou Yong-Sheng Hu Joachim Maier Yan Yu 《Materials Today》2018,21(9):960-973
Sodium-based rechargeable batteries are very promising energy storage and conversion systems owing to their wide availability and the low cost of Na resources, which is beneficial to large-scale electric energy storage applications in future. In the context of attempting to achieve high-energy densities and low cost, multi-electron reaction materials for both cathodes and anodes are attracting significant attention due to high specific capacities involved. Here, we present a brief review on recently reported multi-electron reaction materials for sodium-based batteries. We mostly concentrate on true multi-electron reactions that involve individually valence changes greater than one per redox center, but in addition include materials in the discussion, which undergo multi-electron processes per formula unit. The theoretical gravimetric and volumetric (expanded state) capacities are studied for a broad range of examples. Then, the practically achievable volumetric energy density and specific energy of Na cells with hard carbon, sodium (Na), and phosphorus (P) anodes are compared. For this purpose, various data are recalculated and referred to the same basis cell. The results show the potential superiority of the cells using multi-electron reaction materials and provide an intuitive understanding of the practically achievable energy densities in future Na-based rechargeable batteries. However, these multi-electron reaction materials are facing several key challenges, which are preventing their high-performance in current cells. In order to overcome them, general strategies from particle design to electrolyte modification are reviewed and several examples in both cathode and anode materials using such strategies are studied. Finally, future trends and perspectives for achieving promising Na-based batteries with better performance are discussed. 相似文献
14.
With regard to the intensive investigations of bismuth oxyhalides as promising photocatalysts, much expectation may be put on the corresponding chalcohalides but little is known due to difficulty in the synthesis. In this report, BiSI and Bi19S27I3 were synthesized by one-step mechanochemical method without heating and aqueous operations and the products were characterized by X-ray diffraction crystallography, Raman spectroscopic analysis, X-ray photoelectron spectroscopy analysis, photoluminescence spectra and UV–visible DRS. The new method allowed the simple syntheses of pure bismuth chalcohalides without observable existences of impurity phases. The crystal structures of BiSI and Bi19S27I3 were orthorhombic, with the absorption band gaps of 1.80 and 1.14 eV for BiSI and Bi19S27I3, respectively. Bi-rich compound is considered to be beneficial to the photochemical property of chalcohalides. After overcoming the difficulty in the synthesis, our research would offer new strategy to exploit the potentials of V-VI-VII compounds, particularly of sulfides, as promising semiconductors to compete the corresponding counterparts of oxides. 相似文献
15.
Shihang Li Shuli Song Fei Wang Hao Jin Shimeng Zhou Biao Xie Shuda Hu Fubao Zhou Chun Liu 《Advanced Powder Technology》2019,30(9):1835-1841
In order to solve the problem of pollution induced by particulate matters, bag filters and pleated cartridge filters have been widely applied to industries. However, the effects of cleaning mode on the performances of filters under varying particle sizes are rarely studied. In this paper, the influence of cleaning mode on the pressure drop and dust emission concentration under varying particle sizes were studied through experiments. The results show that the smaller the particle size is, the faster the pressure drop increases, and the higher the dust emission concentration becomes. In the cleaning process, the smaller the particle size, the greater the residual pressure drop, and the worse the cleaning effect. The cleaning frequency rises with the decrease of particle size under the clean-on-demand (C-D) mode, while the maximum pressure drop grows with the decrease of particle size under the clean-on-time (C-T) mode. For the medium and fine particulate matters, the average dust emission concentration and the average pressure drop under the C-D mode are both slightly larger than those under C-T mode. By comparing the quality indexes under different cleaning modes, it can be found that for medium and fine particulate matters, the use of the C-D mode can ensure more excellent filtration and cleaning performances, while for large particulate matters, the choice between the two modes has very limited influence on the filtration and cleaning performances of pulse-jet cartridge filters. 相似文献
16.
In this article, the influence of AA2024 and AA5083 coarse grains on mechanical properties and failure mechanisms of AA5083-5wt. %B4C tri-modal composite has been discussed. AA2024 and AA5083 powders (<100 µm) were added to mechanically milled AA5083-5 wt.%B4C powders in 25 and 50 wt.% and the mixtures were consolidated using the hot press and hot extrusion techniques. Results indicated that by adding AA2024 and AA5083 powders as coarse grains, hardness and tensile strength of AA5083-5 wt.%B4C composite decreased but ductility increased. Moreover, by adding AA2024 powders as coarse grains, fracture mode changed and cracks tended to grow through along AA2024/AA5083-5 wt.%B4C interface rather than being arrested or deflected. It seemed that dislocation mobility and the interface between coarse grains and ultra-fine grains had the main role in determining the mechanical properties and failure mechanisms in tri-modal AA5083-B4C composites. 相似文献
17.
Effect of temperature-related factors on densification,microstructure and mechanical properties of powder metallurgy TiAl-based alloys 总被引:1,自引:0,他引:1
In the present work, the influence of temperature-related factors, including sintering temperature, heating step and temperature-control mode, on the densification, microstructure and mechanical properties of Ti-46.5Al-2.15Cr-1.90Nb-(B, Y, Mo) alloys prepared by SPS has been investigated and discussed in detail. The results obviously indicate that the sintering temperature plays a key role on densification and phase transition, when compared with the heating step and temperature-control mode. Based on the experimental results and theoretical analysis, the densification process and microstructural evolution of TiAl-based alloys during sintering are studied. Moreover, the mechanical properties of the sintered alloys are determined by the combined effects of the densification and microstructure. The obtained results will help to optimize the microstructure and properties for this kind of intermetallic alloys through controlling sintering parameters during powder metallurgy process. 相似文献
18.
In this study, magnetic graphene oxide (MGO) was used as an adsorbent for an effective removal of methylene blue (MB) from aqueous solution. Graphene oxide (GO) nanosheets were synthesized using improved hummer method and magnetized electrochemically using iron electrodes by applying different currents (0.2 to 0.5 A) for different duration. The synthesized MGO was characterized using FTIR, XRD, FESEM, EDS, and BET analysis. It was confirmed that Fe3O4 nanoparticles were successfully incorporated into the structure of GO. MGO was evaluated for the adsorption of MB from simulated colored wastewater by studying the effect of electrochemical synthesis conditions (time and current), adsorbent dosage, pH of the solution, initial MB concentration and the presence of salt in wastewater. The results indicated that 0.16 g/L of MGO synthesized by applying 0.4 A for 10 min can remove 93% of MB (10 mg/L) from alkali solution through monolayer adsorption following Langmuir isotherm with the maximum adsorption capacity of 78.13 mg/g. This study introduces MGO as a recyclable and reusable adsorbent with the removal efficiency above 90% that can be potentially used in wastewater treatment. 相似文献
19.
Ioannis Partheniadis Theodora Papanikolaou Michael F. Noisternig Ulrich J. Griesser Nikolaos Kantiranis Ioannis Nikolakakis 《Advanced Powder Technology》2019,30(8):1642-1654
Porous HAP pellets suitable for loading therapeutic agents were prepared using microcrystalline cellulose (MCC) as pore former and sodium carbonate as sintering aid (SAID). The effect of sintering temperature on the microstructure, mechanical properties and disintegration of pellets prepared at different SAID content was studied. Pellets were characterized by SEM, image analysis, porosimetry and surface area. Secondary phases were identified by PXRD, ATR-FTIR and Raman spectroscopy. Increasing the sintering temperature decreased the diameter, porosity, surface area and friability of the pellets but increased the pore size, tensile strength and disintegration time. The effect of SAID was dependent on sintering temperature. With 5% SAID, a secondary β-tricalcium phosphate (β-TCP) phase was formed, indicated by FTIR peak at 980 cm?1 and characteristic PXRD reflections, whereas with 10%, a secondary B-type carbonated hydroxyapatite phase (CHA) formed, indicated by FTIR peaks at 878 and 1450 cm?1, a broad Raman peak in the region 1020 to 1050 cm?1 and PXRD reflections. Pellets prepared with SAID showed high strength and also porosity. The biphasic HAP/β-TCP pellets exhibited remarkably great strength (4.39 MPa) at the high sintering temperature, while still retaining 43.9% porosity. Relationships were established between the mechanical properties or disintegration time of the porous pellets and the microstructural parameters. 相似文献