首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
设计了一个14位刷新频率达400MHz,用于高速频率合成器的低功耗嵌入式数模转换器。该数模转换器采用5+4+5分段式编码结构,其电流源控制开关输出驱动级采用归零编码以提高DAC动态特性。该数模转换器核采用0.18μm1P6M混合信号CMOS工艺实现,整个模块面积仅为1.1mm×0.87mm。测试结果表明,该DAC模块的微分非线性误差是-0.9~+0.5LSB,积分非线性误差是-1.4~+1.3LSB,在400MHz工作频率下,输出信号频率为80MHz时的无杂散动态范围为76.47dB,并且功耗仅为107.2mW。  相似文献   

2.
介绍了用以改善数字模拟转换器线性特性的模拟自校准技术,分析其相对于动态器件匹配的优点,并应用于一个高速数模转换器的设计之中,在Infineon 0.25μm CMOS工艺下,4-bit DAC,工作电压1.8V,工作频率400MHz,其SNDR达到76dB (精度超过12bit),相比未采用自校准技术时的60dB提高了将近3bit,无杂散动态范围达到84.66dB,毛刺能量小于3fA-s.  相似文献   

3.
茹纪军 《电子质量》2004,(10):54-55,60
系统分析了高速电流型CMOS数模转换器的设计方法.设计了一种采样率为100ms/s,分辨率为8bit,电源电压为3.3v的CMOS电流型DAC.采用同步锁存技术增加了转换速度.电路仿真结果表明在采样率为100Ms/s,输入信号从直流到Nyquist频率,无杂散动态范围(SFDR)为59dB.积分线性误差(INL)和微分线性误差(DNL)分别为±0.5LSB和±0.3LSB.在采样率为100Ms/s,电源电压为3.3v时的功耗小于300mw.电路采用0.3um标准CMOS工艺实现.  相似文献   

4.
本文介绍了一个采用多比特量化的高性能音频Σ-Δ数模转换器。相对于单比特量化的Σ-Δ DAC来说,多比特量化具有调制器环路设计简单、时钟频率低、杂波小等优点;而由多比特量化引入的失配误差,可以采用DWA误差整形算法,将其转换为高频段噪声外推到信号带外,使带内的噪底降低到单比特量化的水平。为减弱数模串扰,进行了对每个模拟元件都加上保护环的创新尝试。采用上述技术在0.18μm混合信号CMOS工艺上实现了一个18位DAC,芯片面积1.86 mm2。测试结果表明,数模转换器的信噪失真比(SNDR)和动态范围(DR)分别达到88dB和96dB。  相似文献   

5.
基于SMIC 0.18μm CMOS工艺,采用了具有电荷抽放技术的电流源结构,以及新型锁存电路产生同步控制信号.设计了一个10位精度的数模转换器(DAC),电源电压为1.8 V,在50负载条件下,DAC满量程输出电流为4mA.当采样频率为200 MHz,输入频率为5 MHz的情况下.满量程功耗为15 mw.微分非线性误差(DNL)为0.25 LSB,积分非线性误差(INL)为0.15 LSB,无杂散动态范围达到79.7 dB.  相似文献   

6.
本文提出了一款集成于标准数字CMOS工艺的12比特精度电流型数模转换器。它是基于无校准6+6分段译码型结构设计的。本设计通过将高权重的单位电流管分成16个分布于阵列分离区域的小管,平均化线性梯度误差和平方误差,实现对其有效的抑制。本文还提出了一种新型的静态特性测试方法,芯片的测试结果显示:本转换器的DNL和INL分别为0.42LSB和0.39LSB,在100MHz时钟下达到了12比特分辨率。芯片工作电压为1.8V,其核心面积为0.28平方毫米。  相似文献   

7.
设计并实现了一种12位40 MSPS流水线A/D转换器,并在0.18 μm HJTC CMOS工艺下流片.芯片工作电压为3.3 V,核心部分功耗为99.1 mW.为优化ADC功耗,采用多位/级的系统结构和套筒式运放结构,并采用逐级按比例缩小的设计方法进一步节省功耗.测试结果表明,A/D转换器的DNL小于0.46 LSB,INL小于0.86 LSB;采样率为40 MSPS时,输入19.1 MHz信号,SFDR超过80 dB,SNDR超过65 dB.  相似文献   

8.
低功耗12b 40M流水线模数转换器   总被引:2,自引:2,他引:0  
殷秀梅  魏琦  许莱  杨华中 《半导体学报》2010,31(3):035006-6
本文介绍了一个12b 40M流水线模数转换器(ADC),在0.18um CMOS工艺下流片,工作电压3.3V,功耗76mW。为了实现功耗优化,流水线各级采用了多比特结构和套筒式运算放大器。模数转换器的前两级采用3比特/级结构,以提高转换器线性度。该模数转换器不需要校正,经测试DNL小于0.51-LSB,INL小于1LSB。当模数转换器工作在40MHz采样率时,在奈奎斯特频率以内,SNDR指标大于67dB;在49MHz以内的输入信号频带内,SFDR指标在80dB左右,变化幅度不超过1-dB。  相似文献   

9.
采用逐次逼近方式设计了一个12 bit的超低功耗模数转换器(ADC).为减小整个ADC的芯片面积、功耗和误差,提高有效位数(ENOB),在整个ADC的设计过程中采用了一种改进的分段电容数模转换器(DAC)阵列结构.重点考虑了同步时序产生电路结构,对以上两个模块的版图设计进行了精细的布局.采用0.18 μm CMOS工艺,该ADC的信噪比(SNR)为72 dB,有效位数(ENOB)为11.7 bit,该ADC的芯片面积只有0.36 mm2,典型的功耗仅为40 μW,微分非线性误差小到0.6 LSB、积分非线性误差只有0.63 LSB.整个ADC性能达到设计要求.  相似文献   

10.
王韧  刘敬波  秦玲  陈勇  赵建民 《微电子学》2006,36(5):651-654,658
设计了一种3.3 V 9位50 MS/s CMOS流水线A/D转换器。该A/D转换器电路采用1.5位/级,8级流水线结构。相邻级交替工作,各级产生的数据汇总至数字纠错电路,经数字纠错电路输出9位数字值。仿真结果表明,A/D转换器的输出有效位数(ENOB)为8.712位,信噪比(SNR)为54.624 dB,INL小于1 LSB,DNL小于0.6 LSB,芯片面积0.37 mm2,功耗仅为82 mW。  相似文献   

11.
介绍了一种用于数模转换器的电流 电压转换电路。在数模转换器的负载电阻片内集成的情况下 ,利用文中提出的电流 电压转换电路 ,数模转换器实现了要求的宽摆幅电平输出 (全“0”输入时 ,输出低电平 - 3V ;全“1”输入时 ,输出高电平 3 5V)。整个数模转换器电路用 1 2 μm双层金属双层多晶硅n阱CMOS工艺实现。其积分非线性误差为 0 4 5个最低有效位 (LSB) ,微分非线性误差为 0 2LSB ,满摆幅输出的建立时间小于 1μs。该数模转换器使用± 5V电源 ,功耗约为 30mW ,电路芯片面积为 0 4 2mm2 。  相似文献   

12.
针对OFDM-UWB标准超宽带收发系统中数模转换器(DAC)的要求,设计了一款8位650MHz采样速率电流驱动型数模转换器(Current-steering DAC)。为了提高静态性能,本设计通过蒙特卡洛分析确定电流源最佳尺寸并采用双中心版图技术;为了提高动态性能,文中采用共源共栅电流源结构,对开关电压降摆幅处理并在数字输入端前加入插值滤波器。测试结果表明,DAC的积分非线性(INL)和差分非线性(DNL)分别为0.3LSB和0.41LSB,650MHz转换速率下带内奈奎斯特无杂散动态范围(SFDR)为41dB。整体面积为1.8cm×1.3cm,其中DAC面积为0.8cm×0.8cm。  相似文献   

13.
A systematic design approach for low-power 10-bit, 100 MS/s pipelined analog-to-digital converter (ADC) is presented. At architectural level various per-stage-resolution are analyzed and most suitable architecture is selected for designing 10-bit, 100 MS/s pipeline ADC. At Circuit level a modified wide-bandwidth and high-gain two-stage operational transconductance amplifier (OTA) proposed in this work is used in track-and-hold amplifier (THA) and multiplying digital-to-analog converter (MDAC) sections, to reduce power consumption and thermal noise contribution by the ADC. The signal swing of the analog functional blocks (THA and MDAC sections) is allowed to exceed the supply voltage (1.8 V), which further increases the dynamic range of the circuit. Charge-sharing comparator is proposed in this work, which reduces the dynamic power dissipation and kickback noise of the comparator circuit. The bootstrap technique and bottom plate sampling technique is employed in THA and MDAC sections to reduce the nonlinearity error associated with the input signal resulting in a signal-to-noise-distortion ratio of 58.72/57.57 dB at 2 MHz/Nyquist frequency, respectively. The maximum differential nonlinearity (DNL) is +0.6167/−0.3151 LSB and the maximum integral nonlinearity (INL) is +0.4271/−0.4712 LSB. The dynamic range of the ADC is 58.72 dB for full-scale input signal at 2 MHz input frequency. The ADC consumes 52.6 mW at 100 MS/s sampling rate. The circuit is implemented using UMC-180 nm digital CMOS technology.  相似文献   

14.
A 13-b 5-MHz pipelined analog-to-digital converter (ADC) was designed with the goal of minimizing power dissipation. Power was reduced by using a high swing residue amplifier and by optimizing the per stage resolution. The prototype device fabricated in a 1.2 μm CMOS process displayed 80.1 dB peak signal-to-noise plus distortion ratio (SNDR) and 82.9 dB dynamic range. Integral nonlinearity (INL) is 0.8 least significant bits (LSB), and differential nonlinearity (DNL) is 0.3 LSB for a 100 kHz input. The circuit dissipates 166 mW on a 5 V supply  相似文献   

15.
An 8-bit 20-MS/s time-domain analog-to-digital data converter (ADC) using the zero-crossing-based circuit technique is presented. Compared with the conventional ADCs, signal processing is executed in both the voltage and time domains. Since no high-gain operational amplifier is needed, this time-domain ADC works well in a low supply voltage. The proposed ADC has been fabricated in a 0.18-mum CMOS process. Its power dissipation is 4.64 mW from a supply voltage of 1.8 V. This active area occupies 1.2 times 0.7 mm2. The measured signal-to-noise-distortion ratio achieves 44.2 dB at an input frequency of 10 MHz. The integral nonlinearity is less than plusmn1.07 LSB, and the differential nonlinearity is less than plusmn0.72 LSB. This time-domain ADC achieves the effective bits of 7.1 for a Nyquist input frequency at 20 MS/s.  相似文献   

16.
This paper presents a differential successive approximation register analog-to-digital converter(SAR ADC) with a novel time-domain comparator design for wireless sensor networks.The prototype chip has been implemented in the UMC 0.18-μm 1P6M CMOS process.The proposed ADC achieves a peak ENOB of 7.98 at an input frequency of 39.7 kHz and sampling rate of 180 kHz.With the Nyquist input frequency,68.49-dB SFDR,7.97-ENOB is achieved.A simple quadrate layout is adopted to ease the routing complexity of the co...  相似文献   

17.
A 1.2?V 8-bit single ended successive approximation register analog-to-digital converter (ADC) for long term evolution (LTE) system is implemented. A novel 5-bit resistor and 3-bit capacitor segment digital-to-analog converter is used to minimize the chip area and reduce the product cost. A rail-to-rail amplifier is used as the pre-amplifier of the comparator in order to obtain the full input swing and the adequate gain for low supply. The offset voltage of the comparator is below 2?mV from the Monte Carlo simulated results. The ring oscillator, current generator and bandgap are integrated into the ADC to satisfy multiple applications. The serial peripheral interface is used to adjust the sampling frequency and the key block??s bias current in order to change the dynamic and static power consumption to satisfy the different need in LTE?? modules. The design was fabricated in a 0.13???m CMOS process with an area of 0.1?mm2 and a power of 1.2 mW. The measurement results show that the differential nonlinearity and integral nonlinearity of the proposed ADC are +0.11/?0.18 LSB and +0.8/?0.04 LSB, respectively. The spurious free dynamic range and signal-to-noise distortion ratio can get 53 and 43.3?dB, respectively.  相似文献   

18.
This paper demonstrates a power efficient design of high-speed Digital-to-Analog Converters (DACs) for wideband communication systems. For Wireless personal area network applications with a 250 MHz signal bandwidth, a 6 bit DAC capable of two times the Nyquist rate sampling is implemented in a current steering segmented 2 + 4 architecture optimized for power efficiency. Along with a proposed master-slave deglitch circuit, several circuit techniques are investigated to improve dynamic performances such as linearity. Implemented in a 0.18 um CMOS process, our DAC achieved a superior conversion performance over the state-of-the-arts, exhibiting integral nonlinearity of less than 0.27 LSB and differential nonlinearity of less than 0.15 LSB. Measured spurious free dynamic range for 251 MHz output signal is 40.92 dB, with total power consumption at 1 GS/s of 6mW, yielding a figure-of-merits of 78.3 pJ/(conversion step*W).  相似文献   

19.
介绍了采用0.18μm数字工艺制造、工作在3.3V下、10位100MS/s转换速率的流水线模数转换器。提出了一种适用于1.5位MDAC的新的金属电容结构,并且使用了高带宽低功耗运算放大器、对称自举开关和体切换的PMOS开关来提高电路性能。芯片已经通过流片验证,版图面积为1.35mm×0.99mm,功耗为175mW。14.7MS/s转换速率下测得的DNL和INL分别为0.2LSB和0.45LSB,100MS/s转换速率下测得的DNL和INL分别为1LSB和2.7LSB,SINAD为49.4dB,SFDR为66.8dB。  相似文献   

20.
A low-voltage 10-bit digital-to-analog converter (DAC) for static/dc operation is fabricated in a standard 0.18-/spl mu/m CMOS process. The DAC is optimized for large integrated circuit systems where possibly dozens of such DAC would be employed for the purpose of digitally controlled analog circuit calibration. The DAC occupies 110 /spl mu/m/spl times/94 /spl mu/m die area. A segmented R-2R architecture is used for the DAC core in order to maximize matching accuracy for a minimal use of die area. A pseudocommon centroid layout is introduced to overcome the layout restrictions of conventional common centroid techniques. A linear current mirror is proposed in order to achieve linear output current with reduced voltage headroom. The measured differential nonlinearity by integral nonlinearity (DNL/INL) is better than 0.7/0.75 LSB and 0.8/2 LSB for 1.8-V and 1.4-V power supplies, respectively. The DAC remains monotonic (|DNL|<1 LSB) as INL reaches 4 LSB down to 1.3-V operation. The DAC consumes 2.2 mA of current at all supply voltage settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号