首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CAG/polyglutamine expansion has been shown to form the molecular basis of an increasing number of inherited neurodegenerative diseases. The mutation is likely to act by a dominant gain of function but the mechanism by which it leads to neuronal dysfunction and cell death is unknown. The proteins harbouring these polyglutamine tracts are unrelated and without exception are widely expressed with extensively overlapping expression patterns. The factors governing the cell specific nature of the neurodegeneration have yet to be understood. Upon a certain size threshold, expanded CAG repeats become unstable on transmission and a modest degree of somatic mosaicism is apparent. Similarly, the molecular basis of the instability and its tissue specificity has yet to be unravelled. Recent reports describing the first mouse models of CAG/polyglutamine disorders indicate that it will be possible to model both the pathogenic mechanism and the CAG repeat instability in the mouse. This has great potential and promise for uncovering the molecular basis of these diseases and developing therapeutic interventions.  相似文献   

2.
Six inherited neurologic diseases, including Huntington's disease, result from the expansion of a CAG domain of the disease genes to produce a domain of more than 40 glutamines in the expressed protein. The mechanism by which expansion of this polyglutamine domain causes disease is unknown. Recent studies demonstrated oligomerization of polyglutamine-domain proteins in mammalian neurons. To study oligomerization of polyglutamine proteins and to identify heterologous protein interactions, varying length polyglutamine-green fluorescent protein fusion proteins were expressed in cultured COS-7 cells. The 19- and 35-glutamine fusion proteins (non-pathologic length) distributed diffusely throughout the cytoplasm. In contrast, 56- and 80-glutamine fusion proteins (pathologic length) formed fibrillar arrays resembling those previously observed in neurons in Huntington's disease and in a transgenic mouse model. These aggregates were intranuclear and intracytoplasmic. Intracytoplasmic aggregates were surrounded by collapsed intermediate filaments. The intermediate filament protein vimentin co-immunoisolated with expanded polyglutamine fusion proteins. This cellular model will expedite investigations into oligomerization of polyglutamine proteins and their interactions with other proteins.  相似文献   

3.
Expansion of CAG trinucleotide repeats coding for polyglutamine stretches has been identified for seven neurodegenerative diseases including Machado-Joseph disease (MJD). There are many common features shared among these disease such as genetic anticipation i.e. accelerated age at onset in successive generations, which is also a result of intergenerational increase in the size of expanded CAG repeats. To identify elements affecting the intergenerational instability of the CAG repeat, we investigated whether the CGG/GGG polymorphism at the 3' end of the CAG repeat in the MJD1 gene affects intergenerational instability. We suggested that an inter-allelic interaction is involved in the intergenerational instability of the CAG repeat and provide a clue to the molecular mechanisms of the instability of the CAG repeat.  相似文献   

4.
Huntington's disease (HD) is associated with expansion of an unstable CAG repeat. Using antibodies against the synthetic peptide corresponding to the sequence of HD gene IT15, we have identified the HD gene product in normal lymphocytes as a approximately 350kDa protein by immunoblot analysis. Moreover, when a modified SDS-PAGE using a low concentration of methylenbisacrylamide was run longer, abnormal immunoreactive bands larger than normal ones were found exclusively in HD samples. We also found double bands in HD brain homogenate samples. Recently on the other CAG repeat diseases, such as SCA1 and DRPLA, abnormal gene products were also reported. These results demonstrate the existence of the expanded CAG repeat gene products and open a possibility that the expanded polyglutamine stretch may really participate in the pathological process of the CAG repeat diseases.  相似文献   

5.
Genes associated with several neurological diseases are characterized by the presence of an abnormally long trinucleotide repeat sequence. By way of example, Huntington's disease (HD), is characterized by selective neuronal degeneration associated with the expansion of a polyglutamine-encoding CAG tract. Normally, this CAG tract is comprised of 11-34 repeats, but in HD it is expanded to > 37 repeats in affected individuals. The mechanism by which CAG repeats cause neuronal degeneration is unknown, but it has been speculated that the expansion primarily causes abnormal protein functioning, which in turn causes HD pathology. Other mechanisms, however, have not been ruled out. Interactions between RNA and RNA-binding proteins have previously been shown to play a role in the expression of several eukaryotic genes. Herein, we report the association of cytoplasmic proteins with normal length and extended CAG repeats, using gel shift and UV crosslinking assays. Cytoplasmic protein extracts from several rat brain regions, including the striatum and cortex, sites of neuronal degeneration in HD, contain a 63-kD RNA-binding protein that specifically interacts with these CAG-repeat sequences. These protein-RNA interactions are dependent on the length of the CAG repeat, with longer repeats binding substantially more protein. Two CAG repeat-binding proteins are present in human cortex and striatum; one comigrates with the rat protein at 63 kD, while the other migrates at 49 kD. These data suggest mechanisms by which RNA-binding proteins may be involved in the pathological course of trinucleotide repeat-associated neurological diseases.  相似文献   

6.
The expansion of trinucleotide repeat sequences has now been shown to be the underlying cause of at least ten human disorders. Unifying features among these diseases include the unstable behavior of the triplet repeat during germline transmission when the length of the repeat exceeds a critical value. However, the trinucleotide repeat disorders can be divided into two distinct groups. Type I disorders involve the expansion of CAG repeats, which encode an expanded polyglutamine, inserted into the open-reading frame of a gene that is usually quite broadly expressed. Recently, mouse models for type I disorders have been developed and the basis of pathology is under study, both in these models and through biochemical and cell biological approaches. The type II disorders involve repeat expansions in noncoding regions of genes. The mechanisms by which these repeat expansions lead to pathology may be quite diverse.  相似文献   

7.
Spinocerebellar ataxia type 1 is due to a CAG repeat expansion in the gene encoding ataxin-1. In a case with an expansion of 56 repeats, intranuclear inclusions were found only in neurons, both in severely affected regions (such as the pons) and in areas where the lesions were inconspicuous (such as the cortex or the striatum). The inclusions were labelled by a monoclonal antibody directed against long polyglutamine stretches (1C2); they were also detected by the anti-ubiquitin antibody. They were faintly eosinophilic, Congo red negative and were not stained by thioflavin S or by ethidium bromide.  相似文献   

8.
Mutations in ion channels have been found to cause a variety of mendelian genetic diseases, and polyglutamine repeat expansion is a newly recognized pathogenic mechanism that causes several rare, genetic, late-onset neurological syndromes. Polymorphic polyglutamine tracts are present in a recently described human, calcium-activated potassium channel, KCNN3 (also known as hKCa3), and alleles of this gene that contain longer repeats have been associated with schizophrenia. The physiological function of the channel is consistent with an etiological role in this disease; drugs designed to target this channel might therefore provide novel psychotherapeutics.  相似文献   

9.
We compared the number of CAG repeats, the age at death, and the severity of neuropathology in 89 Huntington's disease brains. We found a linear correlation between the CAG repeat number and the quotient of the degree of atrophy in the striatum (the brain region most severely affected in Huntington's disease) divided by age at death, with an intercept at 35.5 repeats. The largest CAG repeat length, therefore, at which no pathology is expected to develop is 35.5. These results imply that striatal damage in Huntington's disease is almost entirely a linear function of the length of the polyglutamine stretch beyond 35.5 glutamines multiplied by the age of the patient. Thus, it is predicted that the pathological process develops linearly from birth. Analysis of other measures of striatal function could test this hypothesis and might determine when treatment for CAG repeat diseases should start.  相似文献   

10.
Genetic instability investigations on three triplet repeat sequences (TRS) involved in human hereditary neurological diseases (CTG.CAG, CGG.CCG, and GAA.TTC) revealed a high frequency of small expansions or deletions in 3-base pair registers in Escherichia coli. The presence of G to A polymorphisms in the CTG.CAG sequences served as reporters for the size and location of these instabilities. For the other two repeat sequences, length determinations confirmed the conclusions found for CTG.CAG. These studies were conducted in strains deficient in methyl-directed mismatch repair or nucleotide excision repair in order to investigate the involvement of these postreplicative processes in the genetic instabilities of these TRS. The observation that small and large instabilities for (CTG.CAG)175 fall into distinct size classes (1-8 repeats and approximate multiples of 41 repeats, respectively) leads to the conclusion that more than one DNA instability process is involved. The slippage of the complementary strands of the TRS is probably responsible for the small deletions and expansions in methyl-directed mismatch repair-deficient and nucleotide excision repair-deficient cells. A model is proposed to explain the observed instabilities via strand misalignment, incision, or excision, followed by DNA synthesis and ligation. This slippage-repair mechanism may be responsible for the small expansions in type 1 hereditary neurological diseases involving polyglutamine expansions. Furthermore, these observations may relate to the high frequency of small deletions versus a lower frequency of large instabilities observed in lymphoblastoid cells from myotonic dystrophy patients.  相似文献   

11.
Neuronal intranuclear inclusions have been found in the brain of a transgenic mouse model of Huntington's disease and in necropsy brain tissue of patients with Huntington's disease. We suggest that neuronal intranuclear inclusions are the common neuropathology for all inherited diseases caused by expansion of polyglutamine repeats. We also suggest that patients with a pathological diagnosis of neuronal intranuclear hyaline inclusion disease may also have polyglutamine repeat expansions.  相似文献   

12.
OBJECTIVE: To study the molecular basis of complete androgen insensitivity syndrome (AIS). STUDY DESIGN: The coding region of the human androgen receptor (hAR) gene in two women with AIS was amplified with polymerase chain reaction using 12 pairs of oligonucleotide primers and then sequenced with a dye terminator method. RESULTS: Both patients had mutation in exon E of the androgen-binding domain. In one patient, codon 732 GAC (aspartic acid) was changed to ACC (asparagine), and her CAG polyglutamine tract had 27 repeats. In the other patient, codon 765 GCC (alanine) was changed to ACC (threonine), and her CAG polyglutamine tract in exon A had 19 repeats. CONCLUSION: Except for CAG polyglutamine polymorphism, these two missense mutations were the only differences detected in the coding region of the hAR gene. Both mutations involved the CpG sequence, which has been regarded as a mutation hotspot. To the best of our knowledge, these two mutations have not been observed before in Chinese women. Elucidation of the molecular defects of AIS patients would be very helpful for genetic counseling and prenatal diagnosis.  相似文献   

13.
14.
Spinocerebellar ataxia 7 (SCA7) is a neurodegenerative disorder characterized by degeneration of the cerebellum, brainstem and retina. The gene responsible for SCA7, located on chromosome 3p, recently was cloned and shown to contain a CAG repeat in the coding region of the gene, that is expanded in SCA7 patients of French origin. We examined the SCA7 repeat region in four Swedish SCA7 families as well as in 57 healthy controls. All Swedish SCA7 patients exhibited expanded CAG repeats with a strong negative correlation between repeat size and age of onset. The repeat length in SCA7 patients ranged from 40 to >200 repeats. The largest expansion was observed in a juvenile case with an age of onset of 3 months, and represents the longest polyglutamine stretch ever reported. In patients with 59 repeats or more, visual impairment was the most common initial symptom observed, while ataxia predominates in patients with <59 repeats. Two of the Swedish SCA7 families analysed in this study were shown to be related genealogically. The other two SCA7 families could not be traced back to a common ancestor. All four families shared the same allele on the disease chromosome at a locus closely linked to SCA7, suggesting the possibility of a founder effect in the Swedish population.  相似文献   

15.
Dentatorubral-pallidoluysian atrophy (DRPLA) is known to show the most prominent genetic anticipation among CAG repeat diseases. To investigate the mechanism underlying the meiotic instability of expanded CAG repeats in the gene for DRPLA, we determined the CAG repeat sizes of 427 single sperm from two individuals with DRPLA. The mean variance of the change in the CAG repeat size in sperm from the DRPLA patients (288.0) was larger than any variances of the CAG repeat size in sperm from patients with Machado-Joseph disease (38. 5), Huntington's disease (69.0) and spinal and bulbar muscular atrophy (16.3), which is consistent with the clinical observation that the genetic anticipation on the paternal transmission of DRPLA is the most prominent among CAG repeat diseases. The variance of the change in CAG repeat size was significantly different between the two DRPLA patients (F-test, P < 0.0001). However, the segregation ratio of single sperm with an expanded allele to ones with a normal allele is not statistically different ( P = 0.161) from the expected 1:1 segregation ratio, and thus segregation distortion of expanded alleles in meiosis in male patients with DRPLA was not demonstrated.  相似文献   

16.
The mechanism by which an elongated polyglutamine sequence causes neurodegeneration in Huntington's disease (HD) is unknown. In this study, we show that the proteolytic cleavage of a GST-huntingtin fusion protein leads to the formation of insoluble high molecular weight protein aggregates only when the polyglutamine expansion is in the pathogenic range. Electron micrographs of these aggregates revealed a fibrillar or ribbon-like morphology, reminiscent of scrapie prions and beta-amyloid fibrils in Alzheimer's disease. Subcellular fractionation and ultrastructural techniques showed the in vivo presence of these structures in the brains of mice transgenic for the HD mutation. Our in vitro model will aid in an eventual understanding of the molecular pathology of HD and the development of preventative strategies.  相似文献   

17.
X-linked spinal and bulbar muscular atrophy (SBMA), Kennedy's disease, is a degenerative disease of the motor neurons that is associated with an increase in the number of CAG repeats encoding a polyglutamine stretch within the androgen receptor (AR). Recent work has demonstrated that the gene products associated with open reading frame triplet repeat expansions may be substrates for the cysteine protease cell death executioners, the caspases. However, the role that caspase cleavage plays in the cytotoxicity associated with expression of the disease-associated alleles is unknown. Here, we report the first conclusive evidence that caspase cleavage is a critical step in cytotoxicity; the expression of the AR with an expanded polyglutamine stretch enhances its ability to induce apoptosis when compared with the normal AR. The AR is cleaved by a caspase-3 subfamily protease at Asp146, and this cleavage is increased during apoptosis. Cleavage of the AR at Asp146 is critical for the induction of apoptosis by AR, as mutation of the cleavage site blocks the ability of the AR to induce cell death. Further, mutation of the caspase cleavage site at Asp146 blocks the ability of the SBMA AR to form perinuclear aggregates. These studies define a fundamental role for caspase cleavage in the induction of neural cell death by proteins displaying expanded polyglutamine tracts, and therefore suggest a strategy that may be useful to treat neurodegenerative diseases associated with polyglutamine repeat expansions.  相似文献   

18.
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by expansion of a CAG trinucleotide repeat which codes for glutamine in the protein ataxin-1. We have investigated the effect of this expansion on ataxin-1 by immunoblot analysis. The wild-type protein is detected in both normal and affected individuals; however, a mutant protein which varies in its migration properties according to the size of the CAG repeat is detected in cultured cells and tissues from SCA1 individuals. The protein has a nuclear localization in all normal and SCA1 brain regions examined but a cytoplasmic localization of ataxin-1 was also observed in cerebellar Purkinje cells. Our data show that in SCA1, the expanded alleles are faithfully translated into proteins of apparently normal stability and distribution.  相似文献   

19.
Several human neurodegenerative diseases result from expansion of CTG/CAG or CGG/CCG triplet repeats. The finding that single-stranded CNG repeats form hairpin-like structures in vitro has led to the hypothesis that DNA secondary structure formation is an important component of the expansion mechanism. We show that single-stranded DNA loops containing 10 CTG/CAG or CGG/CCG repeats are inefficiently repaired during meiotic recombination in Saccharomyces cerevisiae. Comparisons of the repair of DNA loops with palindromic and nonpalindromic sequences suggest that this inefficient repair reflects the ability of these sequences to form hairpin structures in vivo.  相似文献   

20.
Huntington's disease (HD) is a progressive neurodegenerative disorder which is clinically characterized by chorea, cognitive decline, and emotional disturbance; it is inherited in an autosomal dominant manner. The HD gene maps to chromosome 4p16.3. Our linkage analysis demonstrated a significant genetic linkage between Japanese HD families and the flanking markers, D4S127, D4S43. The molecular basis of the disease is an expansion of CAG repeat in the huntingtin gene. We performed molecular analysis of the repeat in Japanese HD patients and normal controls. The size of the CAG repeat ranged from 37 to 95 repeats in affected subjects and from seven to 29 in normal controls. A significant correlation was found between the age of onset and the CAG expansion. The length of the expanded repeat is unstable in meiotic transmission and large increases occur in paternal transmission. At the same time the CCG repeat polymorphism adjacent to the CAG repeat was analysed and haplotypes of HD chromosomes were identified. Striking linkage disequilibrium was found between the CAG repeat expansion and an allele of (CCG)10 in Japanese HD chromosome. It is distinct from that described previously in western populations. Western HD chromosomes strongly associate with an allele of (CCG)7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号