首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
顾冲  叶志明  陈玲俐 《钢结构》2005,20(5):82-85
采用ANSYS软件对在一致升温情况下的冷弯薄壁短柱进行有限元数值模拟分析。分析结果表明:随着温度的升高,理想短柱的极限承载力的退化速度高于材料极限强度的下降速度,低于钢材弹性模量高温软化速度。研究表明:柱截面的宽厚比影响柱在高温下的极限承载力退化速度;长细比对柱影响较小。通过对比初始局部缺陷柱与理想柱的极限承载力,得到了升温过程中具有初始局部缺陷柱相对于理想轴压柱的极限承载力修正系数曲线。对于求出的柱高温下极限承载力退化系数曲线,给出了冷弯薄壁短柱抗火设计和验算方法。  相似文献   

2.
对卷边尺寸不同的两类腹板中间设置加劲卷边槽形截面,共18个冷弯薄壁型钢固支轴压试件进行畸变屈曲与局部屈曲相关作用的静力试验研究。得到试件的屈曲模式、相关屈曲行为、破坏模式以及极限荷载。试验结果表明:畸变屈曲与局部屈曲的耦合相关对试件的变形和极限荷载有不利作用;畸变屈曲与局部屈曲的耦合相关作用存有较大的屈曲后承载力;畸变屈曲与局部屈曲的耦合相关顺序,即畸变屈曲 局部屈曲耦合相关、局部屈曲 畸变屈曲耦合相关,对试件的变形、非线性平衡路径、破坏模式以及极限荷载的影响有所不同。采用ABAQUS有限元软件对试件进行模拟分析,计算结果与试验结果吻合良好。  相似文献   

3.
Ben Young  Ehab Ellobody 《Thin》2007,45(3):330-338
Cold-formed steel unequal angles are non-symmetric sections. The design procedure of non-symmetric sections subjected to axial compression load could be quite difficult. The unequal angle columns may fail by different buckling modes, such as local, flexural and flexural–torsional buckling as well as interaction of these buckling modes. The purpose of this study is to investigate the behaviour and design of cold-formed steel unequal angle columns. A nonlinear finite element analysis was conducted to investigate the strength and behaviour of unequal angle columns. The measured initial local and overall geometric imperfections as well as the material properties of the angle specimens were included in the finite element model. The finite element analysis was performed on fixed-ended columns for different lengths ranged from stub to long columns. It is demonstrated that the finite element model closely predicted the experimental ultimate loads and the behaviour of cold-formed steel unequal angle columns. Hence, the model was used for an extensive parametric study of cross-section geometries. The column strengths obtained from the parametric study were compared with the design strengths calculated using the North American Specification for cold-formed steel structural members. It is shown that the current design rules are generally unconservative for short and intermediate column lengths for the unequal angles. Therefore, design rules of cold-formed steel unequal angle columns are proposed.  相似文献   

4.
This paper describes a series of compression tests conducted on cold-formed simple lipped channels and lipped channels with intermediate stiffeners in the flanges and web fabricated from high strength steel plate of thickness 0.6 and 0.8 mm with the nominal yield stress 560 MPa. A range of lengths of lipped channel sections were tested to failure with both ends of the column fixed with a special capping to prevent local failure of column ends and influence from the shift of centroid during testing. The high strength cold-formed steel channel sections of intermediate lengths generally displayed a significant interaction between local and distortional buckling. A noticeable interaction between local and overall buckling was also observed for the long columns. A significant post-buckling strength reserve was shown for those sections that showed interaction between local and distortional or overall buckling. Simple design strength formulas in the Direct Strength Method for the thin-walled cold-formed steel sections failing in the mixed mode of local and distortional buckling have been studied. The strengths predicted by the strength formulas proposed are compared with the test results for verification.  相似文献   

5.
V. Ungureanu  D. Dubina   《Thin》2004,42(2):177
The objective of this two parts paper is to present some recent developments and applications of erosion of critical bifurcation load (ECBL) approach for the interactive buckling. Two different types of problems are analysed: (1) plastic–elastic interactive buckling which implements into the Ayrton–Perry interaction formula the plastic strength of the stub columns evaluated by means of local plastic mechanism analysis, and (2) elastic–elastic interactive buckling for members with perforations.The first part of the paper analyses the occurrence of local plastic mechanisms in cold-formed steel sections in compression, and how they can be implemented in the ultimate limit state analysis of the members. Actually, the failure of thin-walled cold-formed members in compression always occurs with a local plastic mechanism. Starting from this observation, the authors suggest to use in the interactive local-overall buckling analysis the sectional plastic mechanism strength instead of traditional ‘effective section’. The ECBL approach is used to implement the proposed interactive buckling model. Results are compared with those of other two recent methods, namely the direct strength method and plastic effective width approach. Relevant tests are used to evaluate the three methods. Comparisons with European and American design codes are also presented in the paper.  相似文献   

6.
Cristopher D. Moen  B.W. Schafer 《Thin》2008,46(10):1164-1182
The objective of this paper is to observe and quantify the relationship between elastic buckling and the tested response of cold-formed steel columns with holes. Compression tests were conducted on 24 short and intermediate length cold-formed steel columns with and without slotted web holes. For each specimen, a shell finite element eigenbuckling analysis was also conducted such that the influence of the boundary conditions and the hole on local, distortional, and global elastic buckling response could also be captured. Slotted web holes may modify the local and distortional elastic buckling half-wavelengths, and may also change the critical elastic buckling loads. Experimentally, slotted web holes are shown to have a minimal influence on the tested ultimate strength in the specimens considered, although post-peak ductility is decreased in some cases. Tangible connections are observed between elastic buckling and load–displacement response during the tests, including mode switching between local and distortional buckling. The columns are tested with friction-bearing boundary conditions where the columns ends are milled flat and parallel, and bear directly on steel platens. These boundary conditions, which greatly speed specimen preparation, are determined to be viable for evaluating the tested response of short and intermediate length columns, although the post-peak response of intermediate length specimens must be considered with care.  相似文献   

7.
Ju Chen  Ben Young   《Thin》2007,45(1):96-110
This paper presents the mechanical properties data for cold-formed steel at elevated temperatures. The deterioration of the mechanical properties of yield strength (0.2% proof stress) and elastic modulus are the primary properties in the design and analysis of cold-formed steel structures under fire. However, values of these properties at different temperatures are not well reported. Therefore, both steady and transient tensile coupon tests were conducted at different temperatures ranged approximately from 20 to 1000 °C for obtaining the mechanical properties of cold-formed steel structural material. This study included cold-formed steel grades G550 and G450 with plate thickness of 1.0 and 1.9 mm, respectively. Curves of elastic modulus, yield strength obtained at different strain levels, ultimate strength, ultimate strain and thermal elongation versus different temperatures are plotted and compared with the results obtained from the Australian, British, European standards and the test results predicted by other researchers. A unified equation for yield strength, elastic modulus, ultimate strength and ultimate strain of cold-formed steel at elevated temperatures is proposed in this paper. A full strain range expression up to the ultimate tensile strain for the stress–strain curves of cold-formed carbon steel at elevated temperatures is also proposed in this paper. It is shown that the proposed equation accurately predicted the test results.  相似文献   

8.
Corner properties of cold-formed steel sections at elevated temperatures   总被引:1,自引:0,他引:1  
Ju Chen  Ben Young   《Thin》2006,44(2):216-223
This paper presents the mechanical properties of the corner parts of cold-formed steel sections at elevated temperatures. Light-gauge structural members are cold-formed which results the mechanical properties of the corner parts being different from the flat parts. However, previous research has focused on the investigation of the corner parts of cold-formed steel sections at normal room temperature and the performance of the corner parts at elevated temperatures is unknown. An appropriate model for fire resistant design of steel structures necessitates a correct representation of mechanical properties of structural steel at elevated temperatures. Therefore, experimental investigation on corner coupon specimens at different temperatures ranged from approximately 20 to 1000 °C was conducted to study the behaviour of the corner parts of cold-formed steel sections at elevated temperatures. Two kinds of corner coupon specimens, namely the inner corner coupon specimens and outer corner coupon specimens having the steel grade of G500 (nominal 0.2% proof stress of 500 MPa) and nominal thickness of 1.9 mm were tested. The test results were compared with the flat coupon specimens taken from the same cold-formed steel sections as the corner coupon specimens. A unified equation to predict the yield strength (0.2% proof stress), elastic modulus, ultimate strength and ultimate strain of the corner parts of cold-formed steel sections at elevated temperatures is thus proposed in this paper. Generally, it is shown that the proposed equation adequately predicts the test results of the corner coupon specimens. Furthermore, stress–strain curves at different temperatures are plotted and a stress–strain model is also proposed for the corner parts of cold-formed steel sections.  相似文献   

9.
This paper presents the experimental studies of axially loaded fire-resistant steel columns under elevated temperature. With the advancement of metal production, fire-resistant steel with enhanced mechanical properties at elevated temperatures has been developed recently. However, extensive research work is needed in order for the application of fire-resistant steel in building structures. In this study, a series of fire-resistant steel columns was loaded to their ultimate states at specified temperature. The effects of width-thickness ratios, slenderness ratios and residual stress on the performance of fire-resistant steel H-columns are examined. Based on this study, it is found that the section property of fire-resistant H-columns should be at least a non-compact section in order to prevent local buckling. Column strength is sensitive to slenderness ratio at elevated temperature. The strength of a slender column decreased sharply especially for temperatures above 600 °C. It is also found that the failure mode of steel columns changed from inelastic global buckling at room temperature to local buckling at elevated temperature, due to the release of residual stress in fire. An analytical model is proposed which is able to predict the behavior of fire-resistant steel H-columns under elevated temperature. Design guidelines are also proposed for the design of fire-resistant steel columns in fire conditions.  相似文献   

10.
基于我国《冷弯型钢结构技术规范》(征求意见稿)和北美规范及澳洲/新西兰规范中的直接强度法,利用国内外已有的试验数据,计算了60根破坏模式为畸变与整体相关屈曲的轴压试件以及50根破坏模式为畸变屈曲的轴压试件的承载力。通过计算值与试验值的对比分析表明:我国《冷弯型钢结构技术规范》(征求意见稿)中直接强度法所计算的轴压试件畸变与整体相关屈曲的承载力与试验值之比的平均值接近1.0,结果较为理想;计算所得的轴心受压试件畸变屈曲的承载力明显高于试验值,偏于不安全。基于上述结果,对《冷弯型钢结构技术规范》(征求意见稿)中直接强度法计算畸变屈曲的承载力提出了相应建议,即畸变与整体相关屈曲的承载力计算公式和畸变屈曲的承载力计算公式不应统一,应区别对待或给出附加核查条件,在计算畸变半波长度和畸变屈曲的承载力时,采用屈服荷载而非构件整体稳定承载力。  相似文献   

11.
Compression tests of welded section columns undergoing buckling interaction   总被引:1,自引:0,他引:1  
This paper describes a series of compression tests performed on welded H-section and channel section columns fabricated from a mild steel plate of thickness 6.0 mm with nominal yield stress of 240 MPa. The ultimate strength and performance of the compression members undergoing nonlinear interaction between local and overall buckling were investigated experimentally and theoretically. The compression tests indicated that the interaction between local and overall buckling had a significant negative effect on the ultimate strength of the thin-walled welded steel section columns. The Direct Strength Method (DSM), which was newly developed and adopted as an alternative to the effective width method for the design of cold-formed steel sections recently by NAS (AISI, 2004), was calibrated by using the test results for application to welded steel sections. This paper confirms that the Direct Strength Method can properly predict the ultimate strength of welded section columns when local buckling and flexural buckling occur simultaneously or nearly simultaneously.  相似文献   

12.
There are few design provisions in codes and standards on local buckling of steel columns under fire conditions. To examine the local stability of steel stub columns at elevated temperatures, 12 stub columns were tested under simultaneous application of load and fire conditions. The test variables included Grade (type) of steel, buckling resistance, temperature and load levels. During fire tests, cross sectional temperatures, axial displacement, buckling deflection, and local buckling failure modes of flange and web of stub columns were recorded at various temperatures. Data from the tests is utilized to evaluate buckling resistance of flange and web both at room and elevated temperatures by applying the ultimate strain method and curve inflexion point method. Results from fire tests are utilized to validate a finite element model developed for tracing local buckling of steel columns at elevated temperatures. Results from fire tests and finite element analysis show that failure mode of columns at room and elevated temperatures follow similar pattern but the load bearing capacity of Q460 steel columns degrade much more rapidly under fire conditions than that of Q235 steel columns. Further, Eurocode 3 provisions for local buckling produce non-conservative results in certain situations.  相似文献   

13.
This paper presents the experimental results for a series of H steel columns under fire load. The width-to-thickness ratio of steel plates and the slenderness ratios of steel columns are two dominating factors linked to local buckling and global buckling of columns, respectively. To evaluate the influence of these two factors on the structural behavior of steel columns in fire conditions, a series of H steel columns were loaded to their limit states at specified temperature levels. The steady state method has been adopted in order to derive the structural behavior of steel columns at specified temperatures directly.On the basis of the experimental results, it has been found that steel columns with non-compact section are able to reach yield strength at elevated temperature. That is, the width-to-thickness ratio, designed in accordance with current ambient temperature specifications, is capable of preventing brittle failure of steel columns in fire conditions. Depending on the slenderness ratio, the failure of steel columns may change from global buckling at ambient temperature to local buckling at elevated temperature. For plastic section columns with a slenderness ratio greater than 50, column strength drops dramatically to 40% of its strength at ambient temperature. At temperature levels of 500 °C, the column retains more than 70% of its ambient temperature strength if the slenderness ratio of the column is less than 50. However, in the case of temperature levels exceeding 500 °C, or when the slenderness ratio is greater than 50, column strength drops significantly. On the basis of this study, it is tentatively suggested that 500 °C be adopted as the critical temperature for steel members subjected to compression in order to ensure that the column strength keeps higher than 2/3 of the ambient temperature yield strength. The slenderness ratio of steel columns should be limited to 50, so as to prevent brittle failure of steel columns under fire attack.  相似文献   

14.
This paper presents a comprehensive experimental and numerical investigation on the cyclic response of cold-formed steel columns with hollow rectangular sections. The present study examined the columns׳ post-buckling strength and rigidity degradation, deformation and failure modes, ductility, and energy dissipation capacity. The cold-formed steel members exhibited stable hysteretic performance up to the point of local buckling with considerable degradation in strength and ductility. The energy dissipation mechanisms from the in-plane plastic behavior and out-of-plane elastic buckling deformation were identified. The influence of the height-to-width ratio and axial-compression ratio on energy-dissipation and failure mode was also investigated.  相似文献   

15.
高强度钢材轴心受压钢柱整体稳定性能的缺陷影响研究   总被引:2,自引:1,他引:1  
班慧勇  施刚  石永久  王元清 《工业建筑》2012,42(1):37-45,50
为研究高强度钢材轴心受压构件的整体稳定受力性能,了解构件的几何初始缺陷和截面残余应力对其屈曲强度和失稳变形的影响,以及与普通强度钢材轴压杆相比高强度钢材柱的整体稳定性能对缺陷敏感性的变化,采用有限元方法进行数值模拟计算,通过变换几何初始缺陷系数、残余应力数值大小和钢材强度等参数,对计算结果进行对比分析。研究结果表明,随着钢材强度的提高,高强度钢材轴压杆的整体屈曲强度对初始缺陷的敏感性明显降低,特别是对残余应力分布的敏感性;此外,初始缺陷的影响还与构件的长细比有直接关系。研究工作进一步揭示了高强度钢材轴压柱整体稳定性能的特点和优势。  相似文献   

16.
对于卷边槽钢梁柱的畸变屈曲,文献1运用文献4的计算简化模型推导了畸变屈曲弹性计算公式。本文采用文献2的截面,运用有限元分析考虑了单一截面构件在不同参数时构件的弹性和弹塑性屈曲荷载和屈曲模式,并考虑了几何缺陷带来的影响,最后根据试验建立模型并将分析结果与试验结果进行对比。  相似文献   

17.
An experimental investigation into the behaviour of cold-formed plain and lipped channel columns compressed between fixed and pinned ends is presented in this paper. It is shown experimentally that local buckling does not induce overall bending of fixed-ended singly symmetric columns, as it does of pin-ended singly symmetric columns. Consequently, local buckling has a fundamentally different effect on the behaviour of pin-ended and fixed-ended singly symmetric columns. In order to show this fundamental different effect caused by local buckling, a series of tests was performed on plain and lipped channels brake-pressed from high strength structural steel sheets. Four different cross-section geometries were tested over a range of lengths which involved pure local buckling, distortional buckling as well as overall flexural buckling and flexural-torsional buckling. The different effects of local buckling on the behaviour of fixed-ended and pin-ended channels are investigated by comparing strengths, load–shortening and load–deflection curves, as well as longitudinal profiles of buckling deformations. The purpose of the paper is to demonstrate experimentally the different effects of local buckling on the behaviour and strengths of fixed-ended and pin-ended channels.  相似文献   

18.
The paper describes a technique for determining the overall flexural and flexural–torsional bifurcation loads of locally buckled cold-formed channel columns. The method of analysis uses an inelastic geometric non-linear finite strip local buckling analysis to determine the flexural and torsional tangent rigidities of a locally buckled section. These tangent rigidities are substituted into the flexural and flexural–torsional bifurcation equations to calculate the inelastic overall buckling loads. The members are assumed to be geometrically perfect in the overall sense but can include geometric imperfections and yielding in the local mode. The bifurcation analysis is applied to cold-formed plain channel columns. The bifurcation loads and failure modes are compared with tests of fixed-ended columns and shown to be in good agreement with the tests. The effect of yielding is highlighted in the paper.  相似文献   

19.
《钢结构》2012,(4):81-82
对椭圆环形截面钢柱进行数值模拟和设计。建立准确的有限元模型,模拟两端固接的椭圆环形钢柱。对拉伸试验得出的材料非线性及初始局部(整体)几何缺陷都进行了考虑,通过收敛性研究,以获得最佳的单元网格尺寸。采用此数值模型,对100根柱试件进行参数化研究。对材料屈服、局部屈曲、弯曲屈曲及局部屈曲与弯曲屈曲同时发生的破坏模型进行了分析。将柱的承载力试验值和数值分析结果与基于北美规范、澳大利亚规范、新西兰规范和欧洲规范的计算值进行对比。另外,还采用了不适用于椭圆环形截面钢杆的直接强度法进行分析。对这些设计方法均进行了可靠度分析。  相似文献   

20.
This paper presents the numerical simulation and design of cold-formed steel oval hollow section columns. An accurate finite element model was developed to simulate the fixed-ended column tests of oval hollow sections. The material non-linearities obtained from tensile coupon tests as well as the initial local and overall geometric imperfections were incorporated in the finite element model. Convergence study was performed to obtain the optimized mesh size. A parametric study consisted of 100 columns was conducted using the verified numerical model. The failure modes of material yielding, local buckling and flexural buckling as well as interaction of local and flexural buckling were found in this study. The experimental column strengths and numerical results predicted by the parametric study were compared with the design strengths calculated using the current North American, Australian/New Zealand and European specifications for cold-formed steel structures. In addition, the direct strength method, which was developed for cold-formed steel members for certain cross-sections but not cover oval hollow sections, was used in this study. The reliability of these design rules was evaluated using reliability analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号