首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behaviour of self-consolidating concrete (SCC) filled hollow structural steel (HSS) stub columns subjected to an axial load was investigated experimentally. A total of 50 specimens were tested. The main parameters varied in the tests are: (1) sectional types: circular and square; (2) steel yielding strength: from 282 to 404 MPa; and (3) tube diameter or width to wall thickness ratio (D/t or B/t): from 30 to 134.A mechanics model is developed in this paper for concrete-filled HSS stub columns. A unified theory is described whereby a confinement factor (ξ) is introduced to describe the composite action of the steel tube and the filled concrete. The predicted load versus deformation relationship was in good agreement with test results. The theoretical model was used to investigate the influence of important parameters that determine the ultimate strength of the composite columns. The parametric and experimental studies provide information for the development of formulae for the calculation of the ultimate strength and the axial load versus axial strain curves of the composite columns. Comparisons are made with predicted stub column strengths using the existing codes, such as ACI-1999, AISC-LRFD-1999, AIJ-1997, BS5400-1979 and EC4-1994.  相似文献   

2.
Qing Yu  Zhong Tao  Ying-Xing Wu 《Thin》2008,46(4):362-370
In recent years, the utilization of high performance concrete has been the interests of the structural engineers and researchers. As a high performance concrete, self-consolidating concrete (SCC) is a highly flowable concrete that can fill formwork without any mechanical vibration. SCC's unique property gives it significant economic, constructability and engineering advantages. The aim of this paper is thus an attempt to study the possibility of using thin-walled hollow structural steel (HSS) columns filled with very high strength SCC. Tests on 28 HSS columns filled with very high strength SCC were conducted, where the main parameters varied are: (1) section types, circular and square; (2) slenderness ratio, from 12 to 120; and (3) load eccentricity ratio, from 0 to 0.6. Comparisons are made with predicted column strengths using the existing codes such as AISC, EC4 and DBJ13-51-2003.  相似文献   

3.
目前,高性能混凝土逐渐引起了结构工程师和研究人员的兴趣。作为高性能混凝土,自加固混凝土(SCC)具有高流动性,可以不借助机械振动而填充入构件。SCC的特性让这种材料变得极具经济价值,并且在施工及工程方面都具有优势。本文旨在研究薄壁钢管中填充这种高强度混凝土的可能性。对28根填充高性能混凝土的薄壁柱进行试验,主要参数有:1)截面类型:圆形或者方形;2)长细比:12~120;3)荷载偏心率比:0~0·6。计算结果与基于AISC,EC4和DBJ13-51-2003规范设计的柱强度相对比。  相似文献   

4.
An investigation into the fire performance of self-consolidating concrete (SCC) filled double skin tubular columns (CFDST) during the standard fire test is reported. Six full size SCC filled CFDST columns were designed for the fire tests. Detail failure modes of overall specimens and each component in the columns as well as temperatures, deformation and fire endurance were presented. Fire performance of the CFDST columns were studied through analysis of the limiting temperature of the outer tube, composite action between steel and concrete and effect of a number of parameters on the fire endurance. It showed that the limiting temperature in the CFDST columns is significantly higher than that in concrete filled steel tubular (CFST) columns or critical temperature in steel structural components. Strong evidence was found to prove the existence of composite action between steel and concrete in the CFDST columns during fire exposure. Effect of a number of parameters on the fire endurance of the composite columns was identified. Investigation into the fire performance of the columns also reveals possible solutions to improve the fire resistance of CFDST members.  相似文献   

5.
提出了一种重载柱设计的模式,即型钢-方钢管自密实高强混凝土柱。该组合柱是在方钢管中填充自密实高强混凝土和型钢而形成。通过13根型钢-方钢管自密实高强混凝土短柱的轴心受压试验,研究了该组合柱的受力性能。试验结果表明自密实试件与经过振捣的试件的受力性能几乎没有差别;型钢的存在有效地延缓或抑制了高强混凝土中剪切裂缝的产生从而提高了构件的延性;混凝土强度、方钢管的宽厚比和型钢的用量对构件的强度和延性有着显著影响。最后给出了型钢-方钢管自密实高强混凝土轴心受压短柱强度承载力的计算公式,计算结果与试验结果吻合良好。  相似文献   

6.
Strength of slender concrete filled high strength steel box columns   总被引:3,自引:0,他引:3  
The use of thin walled steel sections coupled with concrete infill has been used on various building projects with great advantage. The currently available international standards for composite structures are limited to the design of concrete filled steel columns with compact sections. However, there is limited research work in the literature available which is concerned with slender concrete filled thin-walled steel columns. This paper presents a comprehensive experimental study of thin walled steel sections utilising high strength steel of a thin walled nature and filled with normal strength concrete. A numerical model is developed herein in order to study the behaviour of slender concrete filled high strength steel columns incorporating material and geometric non-linearities. For this analysis, the equilibrium of the member is investigated in the deformed state, using the idealised stress–strain relationships for both the steel and concrete materials, considering the elastic and plastic ranges. This paper presents both an experimental and theoretical treatment of coupled local and global buckling of concrete filled high strength steel columns sometimes termed interaction buckling. The experimental results of columns with high strength steel casings conducted herein by the authors are used for comparison. The effect of the confined concrete core is also addressed and the method shows good agreement with the experimental results of concrete filled steel columns with compact sections. The behaviour of concrete filled steel slender columns affected by elastic or inelastic local buckling is also investigated and compared with relevant experimental results. The paper then concludes with a design recommendation for the strength evaluation of slender composite columns using high strength steel plates with thin-walled steel sections, paying particular attention to existing codes of practice so as not to deviate from current design methodologies.  相似文献   

7.
钢管自密实高性能混凝土压弯构件力学性能研究   总被引:9,自引:2,他引:9       下载免费PDF全文
进行了38个钢管自密实高性能混凝土压弯构件的试验研究,考察的项目和基本参数有:(1)截面形式,包括22个圆试件和16个方试件;(2)管内混凝土不同浇筑方式,包括自密实、手工振捣和机械振捣;(3)截面径(宽)厚比,从33变化到67;(4)荷载偏心率,从0变化到0.3。研究目的在于:考察钢管自密实混凝土与采用振捣密实的钢管混凝土压弯构件力学性能的差异,并比较规程DL/T5085—1999、GJB4142—2000、AIJ(1997)、EC4(1994)、AISC—LRFD(1999)、BS5400(1979)和DBJ13—51—2003在计算钢管自密实高性能混凝土构件极限承载力时的差异,结果是圆钢管自密实混凝土压弯构件的极限承载能力值按规范计算比试验值低5%~20%,方钢管按规范计算比试验值低4%~15%,唯按EC4(1994)计算的方钢管值略高于试验值。  相似文献   

8.
This paper reports an investigation into the behaviour of high strength SCC (self-consolidating concrete) filled steel tubular stub columns exposed to standard fire. A series of tests were carried out to obtain the temperature distribution, axial deformation, limiting temperature of steel and fire endurance of the SCC filled steel tubular stub columns. In addition, a finite element analysis (FEA) model was proposed and used to simulate the fire behaviour of the columns. In the FEA modeling, a sensitivity study was conducted to determine the concrete fracture energy and the contact property of the steel and concrete interface. The verified FEA model was used to analyse the structural behaviour of the columns under fire exposure, such as strain, stress, the load sharing between the steel tube and concrete and local buckling of the steel tube, to gain an insight into the failure mechanism of the columns.  相似文献   

9.
Self-Compacting Concrete (SCC) use is spreading worldwide and it is becoming a regular solution in some special applications, including steel-concrete composite columns. In the particular case of Concrete Filled Tubes (CFT), the main advantage from a practical point of view in the use of SCC consists in employing the steel tube as a formwork to directly cast concrete inside it, without the need of vibration. The study of three different concretes for structural applications as composite elements is presented, each of them designed for a 28-day cylindrical compressive strength of 50 MPa: (i) a Normal Vibrated Concrete, (ii) a Self-Compacting Concrete, (iii) an expansive SCC (with the goal of an increase in bond strength as a consequence of the expansion).CFT with critical length ranging from 131 cm to 467 cm have been experimentally and analytically investigated in uniaxial compression. In each case the steel case presents a cross section of 139.6 mm of external diameter and 4.0 mm thickness and with a fixed eccentricity of the applied load equal to 25 mm. The bond strength at the steel-concrete interface is reported for each of the three mixes.The experimental and analytical results show that the behavior of eccentrically loaded columns is governed by the bending moment-axial load interaction. As a consequence, perfect bond at the interface can be assumed and the axial capacity of the column is only a function of its geometry and of the mechanical properties of the materials.A numerical procedure is proposed to evaluate the increase in the axial capacity of the composite columns consequent to the confinement of the internal concrete in case of zero-eccentricity of the applied axial load with respect to the column’s axis.Finally, the obtained numerical results are introduced into code provisions to evaluate modified axial force N-bending moment M interaction diagrams to predict the axial capacity of the column in the particular test configuration.  相似文献   

10.
This paper describes a series of tests on steel tubular columns of circular and square section filled with normal concrete and recycled aggregate concrete. Thirty specimens, including 24 recycled aggregate concrete filled steel tubular (RACFST) columns and 6 normal concrete filled steel tubular (CFST) columns, were tested to investigate the influence of variations in the tube shape, circular or square, concrete type, normal concrete and recycled aggregate concrete, and load eccentricity ratio, from 0 to 0.53 on the performance of such composite columns. The test results show that both types of filled columns failed due to overall buckling. Comparisons are made with predicted ultimate strengths of RACFST columns using the existing codes, such as ACI 318-1999, AIJ-1997, AISC-LRFD-1999, BS5400-1979, DBJ13-51-2003 and EC4-1994. A theoretical model for normal CFST columns is adopted in this paper for RACFST columns. The predicted load versus deformation relationships are in good agreement with test results.  相似文献   

11.
Eccentrically loaded concrete encased steel composite columns   总被引:1,自引:0,他引:1  
This paper presents a nonlinear 3-D finite element model for eccentrically loaded concrete encased steel composite columns. The columns were pin-ended subjected to an eccentric load acting along the major axis, with eccentricity varied from 0.125 to 0.375 of the overall depth (D) of the column sections. The model accounted for the inelastic behaviour of steel, concrete, longitudinal and transverse reinforcement bars as well as the effect of concrete confinement of the concrete encased steel composite columns. The interface between the steel section and concrete, the longitudinal and transverse reinforcement bars, and the reinforcement bars and concrete were also considered allowing the bond behaviour to be modelled and the different components to retain its profile during the deformation of the column. The initial overall geometric imperfection was carefully incorporated in the model. The finite element model has been validated against existing test results. The concrete strengths varied from normal to high strength (30–110 MPa). The steel section yield stresses also varied from normal to high strength (275–690 MPa). Furthermore, the variables that influence the eccentrically loaded composite column behaviour and strength comprising different eccentricities, different column dimensions, different structural steel sizes, different concrete strengths, and different structural steel yield stresses were investigated in a parametric study. Generally, it is shown that the effect on the composite column strength owing to the increase in structural steel yield stress is significant for eccentrically loaded columns with small eccentricity of 0.125D. On the other hand, for columns with higher eccentricity 0.375D, the effect on the composite column strength due to the increase in structural steel yield stress is significant for columns with concrete strengths lower than 70 MPa. The strength of composite columns obtained from the finite element analysis were compared with the design strengths calculated using the Eurocode 4 for composite columns. Generally, it is shown that the EC4 accurately predicted the eccentrically loaded composite columns, while overestimated the moment.  相似文献   

12.
This paper investigates the behaviour of pin-ended axially loaded concrete encased steel composite columns. A nonlinear 3-D finite element model was developed to analyse the inelastic behaviour of steel, concrete, longitudinal and transverse reinforcement bars as well as the effect of concrete confinement of the concrete encased steel composite columns. The interface between the steel section and concrete, the longitudinal and transverse reinforcement bars, and the reinforcement bars and concrete were also considered that allowed the bond behaviour to be modeled and the different components to retain their profile during the deformation of the column. Furthermore, the initial overall (out-of-straightness) geometric imperfection was carefully incorporated in the model. The finite element model has been validated against published experimental results. The main objective of the study was to understand the structural response and modes of failure of the columns and to assess the composite column strengths against current design codes. The study covered slender, non-slender, stub and long concrete encased steel composite columns. The concrete strengths varied from normal to high strength (20-110 MPa). The steel section yield stresses also varied from normal to high strength (275-690 MPa). Furthermore, the variables that influence the composite column behaviour and strength comprising different slenderness ratios, concrete strength and steel yield stress were investigated in a parametric study. It is shown that the increase in structural steel strength has a small effect on the composite column strength for the columns having higher relative slenderness ratios due to the flexural buckling failure mode. The composite column strengths obtained from the finite element analysis were compared with the design strengths calculated using the American Institute for Steel Construction AISC and Eurocode 4 for composite columns. Generally, it is shown that the EC 4 accurately predicted the design strength for the concrete encased steel composite columns having a concrete cylinder strength of 30 MPa and structural steel yield stresses of 275 and 460 MPa, which are in the limits of the code, which otherwise, was generally conservative. The AISC predictions were quite conservative for all the concrete encased steel composite columns.  相似文献   

13.
《钢结构》2012,(6):82-83
钢管混凝土柱能够最大限度地发挥材料特性,现广泛用于建筑结构中。钢管混凝土柱承载能力高,能量吸收能力强,结构的抗火性能好。描述了含4种截面形式的一系列钢管混凝土柱在标准火下的抗火性能。按照以下方式将钢管混凝土柱分为三组:室温下截面强度相等、钢管截面面积相等、混凝土截面面积相等。采用ABAQUS软件分析组合柱的温度分布、临界温度和过火时间等情况。基于典型参数的分析和对比,讨论了不同截面形式钢管混凝土柱的温度分布和抗火性能。结果显示,圆截面钢管混凝土柱抗火性能最佳,接下来是椭圆截面、正方形截面和矩形截面。在该研究的基础上,给出了高温下钢管混凝土柱的简化设计方程。  相似文献   

14.
《钢结构》2012,(11):78
钢管混凝土柱促进了经济且快速的建设方式。两者的组合增大了结构钢和混凝土的强度和刚度,使用钢管作为模板和核心混凝土的约束减少了工作量。钢管混凝土柱为混凝土和钢材提供了一个共生关系来缓和其不良的失效模式,激发了各种材料的最优性能(混凝土和钢材)。综合作用下,混凝土抗压强度和刚度增大,延缓和抑制了钢管的局部屈曲,并提升其延展性和抗力。矩形钢管混凝土柱与圆形钢管混凝土柱都被应用于实际建设生产中,但由于圆形钢管混凝土柱可以提供更强的混凝土约束和综合作用而拥有更好的性能。对于圆形钢管混凝土柱来说,其缺少可靠的、有延展性的连接件。对这方面的研究调查进行介绍,包括关于圆形钢管混凝土柱柱脚或钢筋混凝土地基柱的简便经济的连接件的开发设计过程,并介绍和评价了桥梁结构中的桩帽与宽桩梁。这种连接件不需要销子和内在的加固就能将钢管与基脚或桩梁相连接。试验分析研究和评估了这种连接件的非弹性抗震性能,并确立了设计标准。将1个装配这种连接件的钢管混凝土柱的抗震性能与传统的钢筋混凝土柱相比较。结果显示,此种连接件进一步增强了组合柱的承载力。这种形式在地震荷载下能提供极佳的延展性和非弹性变形能力,甚至在大侧移情况下也能减轻损害。  相似文献   

15.
The use of hollow structural section (HSS) steel columns filled with high strength concrete (HSC) is becoming popular due to many advantages they offer. However, whereas the design rules for HSS columns filled with normal strength concrete are well established, there are many uncertainties for HSS columns filled with HSC. Results from numerical studies on the behaviour of HSS columns filled with HSC are presented. The studies were carried out based on both North American and European material properties for HSC and steel. Results show that required fire resistance in HSS columns can be obtained through the use of bar- or steel fibre-reinforcement in HSC.  相似文献   

16.
Fire resistance of axially loaded concrete filled steel tube columns   总被引:2,自引:0,他引:2  
The behaviour of axially loaded square and circular concrete-filled steel tube (CFST) columns when exposed to elevated temperatures is investigated in this paper. The fire resistance of this kind of composite tubes is calculated. Comparison of the square and circular columns in the fire resistance shows that, for columns with the same steel and concrete cross-section areas, the circular column has slightly better fire resistance than the square column.  相似文献   

17.
分别对圆钢管、钢管混凝土、中空夹层钢管混凝土柱进行了抗火设计,并对结果进行比较分析。结果表明,在较高荷载比下柱的耐火极限不能满足实际要求,必须进行防火保护。在相同条件下,耐火极限从大到小排序为:圆钢管混凝土、中空夹层钢管混凝土、钢管柱。在一级耐火等级下,钢管混凝土柱和中空夹层钢管混凝土柱需要厚涂型钢结构防火涂料的厚度可比钢管柱分别少55%和18%以上。随着荷载比的减小或截面尺寸的增加,柱的耐火极限提高,需要的保护层厚度减小。对于钢管混凝土柱,若采用水泥砂浆保护层,其厚度是防火涂料的3倍及以上。  相似文献   

18.
Further study on the flexural behaviour of concrete-filled steel tubes   总被引:2,自引:0,他引:2  
This paper is a further study on the flexural behaviour of concrete-filled steel tubes based on the former work presented by Han [Han LH. Flexural behaviour of concrete-filled steel tubes. Journal of Constructional Steel Research 2004;60(2):313-37]. A total of 36 composite beam specimens filled with self-consolidating concrete (SCC) were tested. The main parameters varied in the tests are: (1) sectional types (circular and square); (2) steel yielding strength (from 235 to 282 MPa); (3) the ratio of tube diameter (or width) to wall thickness, D/t (from 47 to 105), and (4) the ratio of shear span to depth (from 1.25 to 6). Comparisons are made with predicted beam capacities using the existing methods, such as AIJ-1997 [Architectural Institute of Japan (AIJ). Recommendations for design and construction of concrete filled steel tubular structures. 1997], AISC-LRFD-1999 [AISC. Load and resistance factor design specification for structural steel buildings. Chicago: American Institute of Steel Construction, Inc.; 1999], BS5400-1979 [British Standard Institute: BS5400, Part 5, Concrete and composite bridges. 1979], EC4-1994 [Eurocode 4. Design of composite steel and concrete structures, Part 1.1: General rules and rules for buildings (together with United Kingdom National Application Document). DD ENV 1994-1-1:1994. London W1A2BS: British Standards Institution; 1994] and the method proposed by Han [Han LH. Flexural behaviour of concrete-filled steel tubes. Journal of Constructional Steel Research 2004;60(2):313-37].Applied calculation formulae of moment versus curvature curves and the flexural stiffness of concrete-filled steel tubular (CFST) beams are presented, based on the mechanics model of Han [Han LH. Flexural behaviour of concrete-filled steel tubes. Journal of Constructional Steel Research 2004;60(2):313-37]. Comparisons are made with predicted beam flexural stiffness using different methods, such as AIJ-1997, AISC-LRFD-1999, BS5400-1979, EC4-1994 and the method proposed in this paper. Comparisons are also made between the simplified model and the mechanics model, and generally good agreement is achieved.  相似文献   

19.
This paper presents a nonlinear 3-D finite element model investigating the behaviour of concrete encased steel composite columns at elevated temperatures. The composite columns were pin-ended axially loaded columns having different cross-sectional dimensions, different structural steel sections, different coarse aggregates and different load ratios during fire. The nonlinear material properties of steel, concrete, longitudinal and transverse reinforcement bars as well as the effect of concrete confinement at ambient and elevated temperatures were considered in the finite element models. The interface between the steel section and concrete, the longitudinal and transverse reinforcement bars, and the reinforcement bars and concrete were also considered allowing the bond behaviour to be modelled and the different components to retain its profile during the deformation of the column. The initial overall (out-of-straightness) geometric imperfection was carefully included in the model. The finite element model has been validated against published tests conducted at elevated temperatures. The time–temperature relationships, deformed shapes at failure, time–axial displacement relationships, failure modes and fire resistances of the columns were evaluated by the finite element model. It has been shown that the finite element model can accurately predict the behaviour of the columns at elevated temperatures. Furthermore, the variables that influence the fire resistance and behaviour of the composite columns comprising different load ratios during fire, different coarse aggregates and different slenderness ratios were investigated in parametric studies. It is shown that the fire resistance of the columns generally increases with the decrease in the column slenderness ratio as well as the increase in the structural steel ratio. It is also shown that the time–axial displacement relationship is considerably affected by the coarse aggregate. The fire resistances of the composite columns obtained from the finite element analyses were compared with the design values obtained from the Eurocode 4 for composite columns at elevated temperatures. It is shown that the EC4 is conservative for all the concrete encased steel composite columns, except for the columns having a load ratio of 0.5 as well as the columns having a slenderness ratio of 0.69 and a load ratio of 0.4.  相似文献   

20.
Concrete-filled tubes are often preferred for the construction of high-rise buildings because of their high strength and stiffness compared to conventional reinforced concrete or steel columns. However, prior to infilling of concrete, the steel tubes are subjected to preloads from upper floors arising from construction loads and permanent loads of the building. These preloads cause initial stresses and deformations in the steel tubes which would affect the load carrying capacity of the composite columns. In this paper, a design method based on a modified Eurocode 4 approach, incorporating the effect of preload, is proposed to evaluate the axial capacity of concrete filled composite columns. Eight full-scale composite column specimens were tested. Parameters studied included the strength of the concrete infill, slenderness of the columns and the amount of preload applied on the steel tubes. Results obtained from the proposed method are compared against test results and other published data. Comparison studies show that the test results are on average 3% higher than predicted results with a standard deviation of 0.089. Finite element analyses are also performed for systematic verification, and the results are 8% higher than predicted results. It is conclude that the proposed design method is accurate and mostly conservative and can be readily used in the context of Eurocode 4: Part 1.1 for designing composite columns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号