首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于0.25 μm GaAs赝高电子迁移晶体管(pHEMT)工艺,研制了一种1.0~2.4 GHz的放大衰减多功能芯片,该芯片具有低噪声、高线性度和增益可数控调节等特点。电路由第一级低噪声放大器、4位数控衰减器、第二级低噪声放大器依次级联构成,同时在片上集成了TTL驱动电路。为获得较大的增益和良好的线性度,两级低噪声放大器均采用共源共栅结构(Cascode)。测试结果表明,在1.0~2.4 GHz频带范围内,该芯片基态小信号增益约为36 dB,噪声系数小于1.8 dB,输出1 dB压缩点功率大于16 dBm,增益调节范围为15 dB,调节步进1 dB,衰减RMS误差小于0.3 dB,输入输出电压驻波比小于1.5。其中放大器采用单电源+5 V供电,静态电流小于110 mA,TTL驱动电路采用-5 V供电,静态功耗小于3 mA。整个芯片的尺寸为3.5 mm×1.5 mm×0.1 mm。  相似文献   

2.
杨楠  杨琦  刘鹏 《现代信息科技》2022,(8):45-47+52
基于GaAs增强型pHEMT工艺,设计了一款单电源供电、工作频率覆盖0.1 GHz~18 GHz单片集成宽带低噪声放大器芯片。在同一芯片上集成分布式低噪声放大器和有源偏置电路,通过有源偏置电路为分布式放大器提供栅压实现放大器单电源供电。在片测试结果表明,放大器在+5 V工作电压下,工作电流60 mA,在0.1 GHz~18 GHz工作频段范围内实现小信号增益18 dB,输出P1 dB(1 dB压缩点输出功率)典型值12 dBm,噪声系数典型值2.5 dB。放大器的芯片尺寸为2.4 mm×1.0 mm×0.07 mm。  相似文献   

3.
采用0.18μm Si RFCMOS工艺设计了应用于s波段AESA的高集成度射频收发前端芯片。系统由发射与接收前端组成,包括低噪声放大器、混频器、可变增益放大器、驱动放大器和带隙基准电路。后仿真结果表明,在3.3V电源电压下,发射前端工作电流为85mA,输出ldB压缩点为5.0dBm,射频输出在2~3.5GHz频带内电压增益为6.3~9.2dB,噪声系数小于14.5dB;接收前端工作电流为50mA,输入1dB压缩点为-5.6dBm,射频输入在2~3.5GHz频带内电压增益为12—14.5dB,噪声系数小于11dB;所有端口电压驻波比均小于1.8:芯片面积1.8×2.6mm0。  相似文献   

4.
针对微波通信等领域的整机系统对超宽带数控衰减器的需求,采用GaAs pHEMT 0.15μm工艺研制了一款DC~40 GHz带数字驱动的6位数控衰减器芯片。衰减器电路采用6个基本衰减单元级联结构,每个衰减单元采用合适的电路拓扑,通过合理优化后,实现了低插入损耗、高衰减精度、低衰减附加相移和小尺寸的目标。由芯片在片测试结果可知,插入损耗小于6.5 dB,输入输出电压驻波比小于1.8:1,均方根衰减精度(64态)小于0.8 dB,全态衰减附加相移小于±10°,静态功耗为3 mA@-5 V,芯片尺寸为2.08 mm×1.1 mm×0.1 mm。  相似文献   

5.
介绍了一种8~20 GHz单片低噪声放大器的研制过程。本电路采用两级放大拓扑,自偏置结构。采用串联负反馈技术降低噪声系数和输入驻波比,采用负反馈技术扩展带宽和提高动态范围。电路设计基于Agilent ADS微波设计环境,并进行版图电磁场验证以提高设计的准确率。芯片在0.25μm GaAs PHEMT工艺线上加工制作。测试结果表明,在8~20 GHz频率范围内,增益大于13 dB(正斜率),噪声系数小于3 dB,输入输出驻波比小于2∶1,1 dB压缩输出功率典型值为15 dBm,单电源5 V供电,电流小于90 mA。芯片面积为1.72 mm×1.35 mm。该芯片可广泛应用于各种微波系统。  相似文献   

6.
分析低噪声放大器的设计原理,采用两级电流复用负反馈结构,基于砷化镓(Gallium Arsenide,GaAs)工艺,利用先进设计系统(Advanced Design System,ADS)软件仿真设计了一款低功耗宽带低噪声放大器芯片,该芯片尺寸仅为1.5 mm×0.9 mm×0.1 mm。通过对芯片性能进行测试,在频带6~12 GHz内,其增益约为23 dB,噪声系数≤1.1 dB,端口回波损耗≥12 dB,输出功率1 dB压缩点P-1≥10 dBm,+5 V电源端口工作电流为17 mA。  相似文献   

7.
采用PIN二极管工艺技术,设计、制作了一种微波单端匹配式PIN单刀单掷功率开关芯片,并给出了详细测试曲线.该开关由四级PIN二极管组成,采用单端匹配结构.工作频率8~10 GHz,整个带内插入损耗小于0.7 dB,输出端口驻波比小于1.4:1,输入端口开关态驻波比均小于1.4:1,在9 GHz点频下测得1 dB压缩点输入功率大于31 dBm,芯片内部集成偏置电路,采用+5 V/-5 V供电,在+5 V工作条件下,电流20 mA.该芯片面积为2.0 mm×1.4 mm.  相似文献   

8.
对宽带有源巴伦电路结构进行了研究,基于0.13 μm GaAs pHEMT工艺,采用电磁仿真软件设计一款2 GHz~18 GHz单片集成宽带有源巴伦芯片。经过流片加工及装配测试,有源巴伦芯片在2 GHz~18 GHz工作频段范围,输入到两输出端小信号增益分别为3.0 dB~3.5 dB、3.5 dB~4.7 dB,两输出端口幅度差≤1.2 dB,相位差180±5°以内,输出P1 dB功率值大于4 dBm,直流功耗约5 V/50 mA。芯片尺寸为1.4 mm×1.9 mm×0.07 mm。实测与仿真结果具有一定的一致性。  相似文献   

9.
基于GaAs赝高电子迁移率晶体管(PHEMT)工艺,研制了一种5~ 12 GHz的收发一体多功能芯片(T/R MFC),其具有噪声低、增益高和中等功率等特点.电路由低噪声放大器和多个单刀双掷(SPDT)开关构成.为了获得较低的噪声系数和较大的增益,低噪声放大器采用自偏置三级级联拓扑结构;为了获得较高的隔离度和较低的插入损耗,SPDT开关采用串并联结构.测试结果表明,在5~ 12 GHz频段内,收发一体多功能芯片的小信号增益大于26 dB,噪声系数小于4 dB,输入/输出电压驻波比小于2.0,1 dB压缩点输出功率大于15 dBm.其中,放大器为单电源5V供电,静态电流小于120 mA;开关控制电压为-5 V/0 V.芯片尺寸为2.65 mm×2.0 mm.  相似文献   

10.
从行波放大器设计理论出发,研制了一款基于低噪声GaAs赝配高电子迁移率晶体管(PHEMT)工艺设计的2~20 GHz单片微波集成电路(MMIC)宽带低噪声放大器。该款放大器由九级电路构成。为了进一步提高放大器的增益,采用了一个共源场效应管和一个共栅场效应管级联的拓扑结构,每级放大器采用自偏压技术实现单电源供电。测试结果表明,本款低噪声放大器在外加+5 V工作电压下,能够在2~20 GHz频率内实现小信号增益大于16 dB,增益平坦度小于±0.5 dB,输出P-1 dB大于14 dBm,噪声系数典型值为2.5 dB,输入和输出回波损耗均小于-15 dB,工作电流仅为63 mA,低噪声放大器芯片面积为3.1 mm×1.3 mm。  相似文献   

11.
基于GaAs E/D赝配高电子迁移率晶体管(PHEMT)工艺、多层陶瓷管壳工艺和芯片微组装工艺技术,设计并制作了一种微波小型化封装四通道多功能电路.该多功能电路集成了通道选择、6 bit移相和4 bit衰减等功能,由低噪声放大器(LNA)芯片、功分开关网络多功能芯片(MFC)、数控移相衰减多功能芯片、3-8译码器芯片和多层陶瓷外壳组成.测试结果表明,在频率为2.0~3.5 GHz时,电路增益大于16 dB,噪声系数小于1.3 dB,端口电压驻波比(VSWR)小于1.5∶1,多功能电路采用+5 V/-5 V供电,工作电流分别为110 mA@+5 V,48 mA@-5 V.多功能电路的封装尺寸为19.0 mm×17.0 mm×3.1 mm.  相似文献   

12.
在简要介绍MMIC技术的基础上论述了使用ADS仿真软件设计超低附加相移0.5GHz~18GHz六位数控衰减芯片的方法。该衰减芯片由相对独立的六位衰减单元级联而成,在0.5GHz~18GHz频带范围内,插入损耗小于5dB,衰减精度不大于±(0.2+10%A)dB;步进为0.5dB;驻波不大于1.5;附加相移不大于±3.5°;电路芯片尺寸为2.4mm×1.2mm×0.1mm。采用TTL电平逻辑控制,开关速度小于20ns。芯片背面既是直流地也是射频地,可广泛用于相控阵系统。  相似文献   

13.
本文介绍了一种具有片上巴伦的超宽带(UWB)3GHz~5GHz直接转换接收机。它由电容交叉耦合共栅极低噪声放大器(LNA)和改进型吉尔伯特混频器组成,采用SMIC RFCMOS技术。仿真结果表明,本文所设计的UWB接收机具有较好的输入匹配(<-9dB)、3.9dB~5.5dB的噪声系数和19dB~25dB的功率转换增益。在1.2V供电情况下消耗22mA电流,并占用0.66×0.8mm~2芯片面积(包括焊盘)。  相似文献   

14.
利用电流复用技术设计8mm频段低噪声放大器芯片,采用0.15μm GaAs PHEMT工艺,芯片尺寸为1.73mm×0.75mm×0.1mm。测试结果显示:在32~38GHz频带内,放大器增益大于21dB,噪声系数小于1.85dB,输入、输出电压驻波比小于2.5,P1 dB大于7dBm,功耗5V,28mA,采用电流复用技术比传统设计的功耗降低将近40%。  相似文献   

15.
介绍了用Agilent ADS软件设计的一种反馈式GaAs MMIC宽带放大器。采用单级GaAs微波场效应管,电路结构上通过并联负反馈的形式增加带宽,可以覆盖2~18GHz频带,增益大于6dB,输入输出驻波比3∶1;采用5~8V单电源供电,电流35mA,芯片面积1.5mm×1.5mm×0.1mm。具有面积小,使用方便的特点,可以用来补充通道增益,也可以多级级联,用于增益需求比较高的场合,可广泛应用于各种微波系统。  相似文献   

16.
利用0.15μm GaAs PHEMT工艺,研制了一款集成功率放大器和低噪声放大器的毫米波多功能单片。发射支路功率放大器采用三级放大拓扑结构,在32~36GHz内,在6V工作电压下,线性增益23dB,增益平坦度优于±0.75dB,输入/输出驻波小于1.3,饱和输出功率30dBm,功率附加效率约30%。接收支路低噪声放大器采用三级放大拓扑结构,在5V、30mA工作电压下,在32~37GHz内,线性增益23.5dB,增益平坦度优于±1dB,噪声系数小于2.5dB,1dB压缩输出功率大于6dBm。该芯片面积为3.67mm×3.13mm。  相似文献   

17.
包宽  樊祥宁  李伟  章丽  王志功 《半导体学报》2012,33(1):015003-8
本文给出了一种应用于多模多标准接收机的宽带低噪声放大器的设计。采用噪声抵消技术实现了低噪声特性,同时采用栅极电感峰化技术实现了宽带平稳增益,进而提高了高频处得噪声性能。芯片在0.18 μm CMOS 工艺下制造,测试结果表明,该低噪放的-3dB带宽为2.5 GHz,增益为16 dB。在300 MHz 到2.2 GHz 带宽内的增益变化在0.8 dB之内。噪声系数为3.4 dB,不同频点处测得的平均IIP3 为-2 dBm。该低噪放的核心芯片面积为0.39mm2, 在1.8V供电电压下,抽取直流电流11.7 mA。  相似文献   

18.
针对航空航天和卫星通信等设备的需求,介绍了一款超宽带延时幅相控制多功能芯片。该芯片集成了数字和微波电路,有T/R 开关、5 位数控延时器(10 ps 步进TTD)、5位数控衰减器(1 dB 步进ATT)、2 个行波放大器、均衡器及数字电路。基于GaAs E/D PHEMT 工艺研制出了芯片实物,芯片尺寸为4.5 mm*5.0 mm*0.07 mm。采用微波在片测试系统对该幅相控制多功能芯片进行了实际测试,在3 ~ 17 GHz 频段内实现了10~310 ps 延时范围,1~31 dB 衰减范围。测试结果显示,发射/接收增益大于2 dB,发射1 dB 压缩输出功率P1 dB_Tx大于12 dBm,接收1 dB 压缩输出功率P1 dB_Rx大于10 dBm,全态输入输出驻波均小于1.7,+5 V 下工作电流130 mA,-5 V 下工作电流12 mA。衰减器全态RMS 精度小于1.4 dB,全态附加调相小于±8°。延时器全态RMS 精度小于3 ps,全态附加调幅小于±1 dB。  相似文献   

19.
蔡力  傅忠谦  黄鲁 《半导体学报》2009,30(11):115004-5
本文提出一种工作在3-5GHz的高增益低功耗的差分超宽带低噪声放大器.输入级采用共栅结构以获取宽带输入匹配,同时采用了电容交叉耦合和电流复用技术,从而可以在低功耗条件下获取高增益.采用0.18-um cmos工艺制作出来的样品的测试显示该低噪声放大器在4.4mA电流,1.8V电源功耗下的峰值功率增益为17.5dB,3dB带宽为2.8-5GHz,在4.5mW的功耗下的峰值增益为14dB(1.5V电源下3mA电流).该差分低噪声放大器的芯片面积包括测试pad在内为1.01平方毫米.  相似文献   

20.
为了克服混频器噪声对GPS接收机灵敏度造成的影响,设计了一种应用于GPS射频前端的低噪声混频器电路.采用自偏置缓冲级放大本振信号,有效地提高了电路性能.该混频器的转换增益为23 dB,噪声系数为4.55 dB,3阶交调点为-9.36 dBm,在1.57 GHz到1.6 GHz频段上,反射系数S11小于-15 dB,电路采用1.8 V电压供电;混频器核心电路静态工作电流1.2 mA,采用CMOS 0.18 μm工艺实现,芯片版图面积为160μm×360μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号