首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Luminescent yttrium aluminum garnet (Y3Al5O12) nanoparticles doped with Eu (YAG:Eu3+) were continuously synthesized by directly feeding potassium hydroxide solution and metal salt solution to supercritical water (SCW). Effects of Eu concentration, pH, and residence time on photo-luminescence were studied using a continuous tubular reactor. Residence time played a key role in producing single-phase YAG:Eu3+ nanoparticles. The residence time of 20 s under SCW conditions (400 °C and 280 bar) was enough to form YAG:Eu3+ phosphor without any intermediate phases. At this residence time, the Eu concentration and pH condition under SCW contributed to improving the size, morphology and luminescent property of YAG: Eu3+ nanoparticles. The average size of the prepared phosphor nanoparticles at 10 at.% and pH of 9.10 was 74 nm and the morphology was identified as nearly uniform and spherical-like in shape. Without further thermal treatment, the phosphor YAG:Eu3+ synthesized in the continuous reactor under SCW conditions showed strong luminescence properties and red emission spectra.  相似文献   

2.
Cubic Y2O3:Eu3+ nanoparticles with a size about 32 nm were synthesized using a facile hydrothermal method followed by an annealing process. As expected, the Y2O3:Eu3+ nanoparticles had a broad Eu–O excitation band ranging from 200 nm to 285 nm peaking at about 260 nm. The Y2O3:Eu3+ nanoparticles were then used to fabricate the inorganic–organic hybrid nanostructures with thenoyltrifluoroacetone (TTA). The Y2O3:Eu3+–TTA hybrid nanostructures exhibited a new strong excitation band ranging from 280 nm to 390 nm peaking at about 368 nm. This new excitation band was attributed to the energy transfer mechanism of the Y2O3:Eu3+–TTA hybrid system. It is interesting to note that this energy transfer mechanism had a close interaction with the Eu–O excitation of Y2O3:Eu3+ nanoparticles. The phase structures, chemical bonding information, microstructural characteristics and luminescence properties were investigated.  相似文献   

3.
LaF3:Eu nanophosphors were prepared by a traditional hydrothermal method with citric acid as a reducing agent. X-ray diffraction, scanning electronic microscopy, and luminescence spectroscopy were used to study the nanophosphors. The formation of three different luminescence centers of Eu2+ and two different luminescence centers of Eu3+ is attributed to the existence of abundant surface defects in this nanophosphor. Eu3+ is effectively excited by energy transfer from Eu2+ to Eu3+. The excitation wavelength of Eu3+ covers a broad spectral range from 250 to 480 nm. The nanophosphor shows a tunable luminescence color varying from blue to white and then to red, which is explained from three aspects of Eu concentration, energy transfer, and concentration quenching. Utilizing the surface defect of nanoparticles to control the reduction of Eu3+ is considered a promising strategy for exploring Eu2+ and Eu3+ codoped phosphor suitable for the lighting and display application.  相似文献   

4.
The solvothermal synthesis of highly luminescent and homogeneous Gd2O3:Eu3+ nanophosphor using diethylene glycol as medium, followed by controlled combustion with citric acid as fuel is reported. The influence of concentrations of carboxylic acid and metal cations on the structure, morphology and luminescence properties are investigated in detail. The microscopic investigations indicate the nanocrystalline nature and the strong influence of cation concentration on the size, shape and agglomeration of the particles. It is found that increase in concentration of metal cations lead to the reduction in agglomeration of nanophosphors. The large value of intensity parameter Ω2, suggested that Eu3+ ions reside in a more asymmetric environment, resulted in intense emission due to 5D07F2 electric dipole transition. Emission decay analysis of the samples exhibited one exponential nature. The samples prepared under optimum conditions showed a quantum efficiency of 78.63% and a moderately high life time of 1.217 ms.  相似文献   

5.
Eu3+-activated MgAl(PO4)O:phosphor has been synthesized by a high temperature solid state reaction and efficient red emission under near-ultraviolet excitation is observed. The emission spectrum shows a dominant peak at 594 nm due to the 5D07F1 transition of Eu3+. The excitation spectrum is coupled well with the emission of UV LED (350–410 nm). The effect of Eu3+ concentration on the luminescent properties of MgAl(PO4)O:Eu3+ and the mechanism of concentration quenching of Eu3+ are studied. The results show that MgAl(PO4)O:Eu3+ is a promising red-emitting phosphor for white LEDs.  相似文献   

6.
Alkaline earth metal gallets have been identified as an important ceramic material. The crystal chemistry of many of these gallets is well explored; however, very rare studies regarding optical properties of rare earth (RE) ions doped in such gallets, particularly in Sr3Ga2O6 host, have been carried out. The present study reports on synthesis and characterization of novel Sr3Ga2O6:Eu3+ phosphors. The phosphors have been synthesized using a conventional solid state reaction method. Crystal structure, morphology and luminescence properties (excitation, emission and CIE coordinate) of these phosphors have been studied as a function of sintering temperature and Eu3+ concentration. X-ray diffraction study reveals that the phosphor sintered at low temperature (900 °C) contains an impurity phase which is removed at higher sintering temperatures and results into cubic crystalline phase of Sr3Ga2O6. Particle size of the phosphor increases with an increase in sintering temperature which results to a red shift in the peak position of excitation band lying in a broad range from 250 to 370 nm. Optimum emission intensity is attained for 0.12 mol% concentration of Eu3+ ions; above this concentration, a quenching in emission intensity is observed.  相似文献   

7.
Transparent BaTiO3:Eu3+ films were prepared via a sol-gel method and dip-coating technique, using barium acetate, titanium butoxide, and polyvinylpyrrolidone (PVP) as modifier viscosity. BaTiO3:Eu3+ films ~500 nm thick, crystallized after thermal treatment at 700 ºC. The powders revealed spherical and rod shape morphology. The optical quality of films showed a predominant band at 615 nm under 250 nm excitation. A preliminary luminescent test provided the properties of the Eu3+ doped BaTiO3.  相似文献   

8.
《Ceramics International》2017,43(5):4599-4605
We synthesized the trivalent europium ions (Eu3+) doped lanthanum aluminate (LaAlO3, LAO) nanophosphors by a solvothermal method. Their structural, morphological, and luminescent properties were systematically investigated. The obtained nanoparticles possessed single nanocrystallinity with a rhombohedral structure. For the excitation originating from the charge transfer band (O2- to Eu3+ ions) under 320 nm illumination, the featured emissions of Eu3+ ions were detected in all the compounds. The optimum doping concentration of Eu3+ ions in LAO was about 9 mol% and the concentration quenching was dominated by dipole-dipole interaction. Furthermore, the Judd-Ofelt (J-O) theory was used to estimate the J-O intensity parameters. Based on the temperature-dependent PL emission spectra, the thermal stability was analyzed and the activation energy was obtained to be 0.234 eV. Meanwhile, the decay time, color coordinate/purity, and cathodoluminescence behaviors of the synthesized nanophosphors were also studied. These characteristics make the Eu3+-doped LAO nanoparticles a promising red-emitting phosphor for both ultraviolet-based white light-emitting diodes and field-emission displays.  相似文献   

9.
This study was carried out to characterize the crystal structure and luminescence properties of Eu2+ doped red-emitting Ba2Si5N8 phosphor. In this research, Ba2Si5N8 phosphors with various Eu compositions were prepared by normal pressure sintering (NPS). Ba3N2, Si3N4 and Eu2O3 were sintered at a high temperature in a mixture of N2 and H2. The crystal structure was analyzed by X-ray diffraction(XRD), and the photoluminescence(PL) properties of the Eu2+ - activated Ba2Si5N8 phosphors were evaluated as a function of the Eu2+ activator concentration. The red-emitting Ba2Si5N8 phosphors showed a broad excitation band range as well as high quantum output.  相似文献   

10.
This paper describes an investigation of the crystalline morphology and photoluminescent properties of YInGe2O7:Eu3+ powders using microwave assisted sintering. For comparison, the properties of YInGe2O7:Eu3+ powders sintered at 1200 °C in conventional furnace for 10 h were also investigated. X-ray powder diffraction analysis confirmed the formation of monoclinic YInGe2O7 without second phase or phases of starting materials as YInGe2O7:50 mol% Eu powders sintered at 1200 °C in microwave furnace for 1 h. Scanning electron microscopy showed smaller particle size and more uniform grain size distributions are obtained by microwave assisted sintering. In the PL studies, both microwave sintered and conventionally sintered powders emitted a maximum luminescence centered at 620 nm under excitation of 393 nm with similar luminescent intensity. The results show that microwave processing has the potential to reduce the time and required energy input for the production of YInGe2O7:Eu3+ phosphors without sacrificing the photoluminescence.  相似文献   

11.
LaOF:Eu3+ nanoparticles were successfully prepared by annealing LaF3:Eu3+ nanocrytsals which were capped with SiO2 shell. The SiO2 shell effectively prohibited the growth of LaF3:Eu3+ nanocrystals during the annealing process, and it was etched off after annealing to obtain the LaOF:Eu3+ nanoparticles. The LaOF:Eu3+ nanoparticles had a size comparable to the original LaF3:Eu3+ nanoparticles. Inorganic–organic hybrid nanoparticles of LaF3:Eu3+ and LaOF:Eu3+ nanoparticles with thenoyltrifluoroacetone (TTA) ligands were prepared. Strong luminescence as a result of the energy transfer from the TTA organic ligands to the LaF3:Eu3+ and LaOF:Eu3+ nanoparticles was observed. The LaOF:Eu3+‐based hybrid nanoparticles exhibited stronger luminescence intensity and broader excitation spectral range than the LaF3:Eu3+‐based hybrid nanoparticles. Effect of the content of TTA ligands on the luminescence of the LaOF:Eu3+ nanoparticles was investigated in detail.  相似文献   

12.
Herein we presented polymer complex solution method for production of well crystalline europium doped Y2O3 nanopowders. Polyethylene glycol (PEG) of five different molecular weights is used both as a fuel and as a nucleation agent for the crystallization. Powders were cold-pressed and sintered to obtain ceramics. SEM images taken from ceramic pellets indicate formation of a dense structure, with a pronounced grain growth and low pore concentration. Luminescence emission spectra of powders and ceramics are similar, and in good agreement with theoretical data. Lifetimes of Eu3+5D0 level in nanocrystalline powders are higher compared to one observed in bulk, confirming in this case theory of lifetime lengthening in nanophosphors due to the change of effective refraction index. As expected, lifetime values in ceramic samples decrease toward the value in bulk Y2O3. The optical filling factor is calculated from observed decay times, providing a measure of discrepancy between powder and bulk state regarding their luminescent properties.  相似文献   

13.
Europium-doped yttrium orthovanadate/polyethylene oxide nanofibers were fabricated by firstly, synthesizing crystalline YVO4:Eu3+ nanoparticles using an aqueous precipitation method followed by electrospinning of PEO/YVO4:Eu3+ polymer composites. X-ray diffraction patterns showed that the nanoparticles exhibited well-defined peaks that were indexed as the tetragonal phase of YVO4. No additional peaks of other phases were observed indicating that Eu3+ ions were effectively built into the YVO4 host lattice. The photoluminescence spectra for the nanofibers showed peaks at 593, 615, 650, and 698 nm which was ascribed to the 5D0? 7F1, 5D0? 7F2, 5D0? 7F3 and 5D0? 7F4 transitions of Eu3+. Due to an efficient energy transfer from vanadate groups to Eu3+, the composite nanofibers showed a strong red emission under ultraviolet excitation characteristic of the red luminescence of the europium ion. The results demonstrate that this synthetic approach could prove to be viable for the fabrication of rare earth/polymer composite nanofibers intended for luminescent device applications.  相似文献   

14.
《Ceramics International》2017,43(13):9838-9845
The structural and luminescent properties of Eu3+ doped TiO2 nanophosphors synthesized by low cost combustion method were investigated. The X-ray diffraction analysis revealed that crystallite size decreases with doping concentration. Lattice volume expansion occurred due to the substitution of Ti4+ ions by larger ionic radii ions Eu3+. FESEM images showed prepared phosphors to be nano size spherical shaped particles. Energy band gap of 3 mol% Eu3+ doped samples decreased to 3.15 eV due to doping effect. The Eu3+ doped TiO2 nanophosphors exhibited main red emission peak centered at 616 nm under 395 nm UV light excitation. Concentration quenching was observed at 3 mol% doping, that has been ascribed to dipole-dipole interaction. The covalent nature of Eu-O bond and environment around Eu3+ ions were discussed using Judd-Ofelt (J-O) intensity parameters. Internal quantum efficiency was calculated using excited state lifetime 5D0 state of Eu3+ ion and J-O theory. The CIE colour coordinates and colour purity were calculated using the spectral energy distribution function. Low excited state life time indicated that Eu3+ doped TiO2 can be used as red emitting phosphor for white light emitting diode applications.  相似文献   

15.
Monodisperse and spherical Eu-doped TiO2 nanodots were prepared on substrate by phase-separation-induced self-assembly. The average diameters of the nanodots can be 50 and 70 nm by changing the preparation condition. The calcined nanodots consist of an amorphous TiO2 matrix with Eu3+ ions highly dispersed in it. The Eu-doped TiO2 nanodots exhibit intense luminescence due to effective energy transfer from amorphous TiO2 matrix to Eu3+ ions. The luminescence intensity is about 12.5 times of that of Eu-doped TiO2 film and the luminescence lifetime can be as long as 960 μs.  相似文献   

16.
Energy conservation and environmental safety are the key requirements in the modern world. We report novel orange-emitting double perovskite Ba2LaNbO6:Eu3+ (BLN:Eu3+) nanophosphor fabricated using a citrate sol-gel method for use in general illumination and photocatalysis. After annealing at 800?℃, the particles exhibited a nanorod-like morphology with monoclinic structure. The photoluminescence emission spectra exhibited an intense 5D07F1 transition at 594?nm and a moderate 5D07F2 transition at 615?nm, demonstrating that the Eu3+ ions occupied the La3+ sites with inversion symmetry. The optimal concentration of Eu3+ ions was found to be about 5?mol% for the BLN host lattice. Energy transfer from the NbO67- octahedrons to the Eu3+ ions was clearly witnessed when the BLN:Eu3+ nanophosphors were excited with both the characteristic excitation bands of Eu3+ (7F05L6) and NbO67- octahedrons at 392 and 380?nm, respectively. The thermal quenching temperature of 5?mol% Eu3+ ions doped BLN nanophosphors was found to be 183?℃, indicating that these nanophosphors are very stable at high temperatures. In addition, the dye removal efficiency of the proposed BLN nanophosphors was verified using Rhodamine B (RhB) dye as a model pollutant under UV irradiation. Compared to a commercial nano-ZnO catalyst, our synthesized BLN nanophosphors showed superior RhB de-colorization efficiency. Therefore, the proposed BLN:Eu3+ nanophosphors are promising multifunctional materials for photocatalysis and general lighting applications.  相似文献   

17.
Luminescent rare earth nanoparticles exhibit superior optical stability over commonly‐used organic dyes and higher biocompatibility over quantum dots, rendering them advantageous as bioimaging nanoprobes. However, their typical excitation inhibits their broad employment with conventional fluorescence microscopes and, thus, solutions are sought to shift their activation in the long‐wavelength (near‐UV) spectral region. Here, we synthesize YVO4:Eu3+ nanophosphors by flame aerosol technology to systematically study the effect of Bi3+ codoping on their luminescence. That way, we identify an optimal Bi‐content for sufficient near‐UV activation. These nanophosphors are highly crystalline and appeared bright red under a conventional fluorescence microscope, facilitating bioimaging with HeLa cells and in vitro dosimetry correlations in the presence and absence of serum. The nanophosphor superiority over organic‐dye‐labeled silica nanoparticles is shown during dynamic imaging for 4 h without photobleaching for the former. These YVO4:Eu3+/Bi3+ nanophosphors can provide a non‐photobleaching tool for further dynamic nanoparticle‐cell interaction studies with conventional fluorescence microscopes. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2947–2957, 2018  相似文献   

18.
A series of Eu2+ and Ce3+ doped/co-doped Sr3Al2O5Cl2 afterglow phosphors that presented various bright colors were successfully synthesized via high temperature solid state reaction. The structure and luminescence properties of the obtained samples were characterized by X-ray powder diffraction (XRD), photoluminescence (PL) spectra and decay curves as well as the thermoluminescence (TL) glow curves. The XRD results showed that all the phase could be indexed to the orthorhombic structure with the space group P212121. After being exposed to a 254 nm or 365 nm mercury lamp, blue/yellow-orange afterglow emissions with broad bands peaking around 620 nm/435 nm, which were ascribed to the characteristic 4f65d–4f7/5d1–4f1 transitions of Eu2+/Ce3+, could be observed in phosphors of Sr3Al2O5Cl2:Eu2+/Sr3Al2O5Cl2:Ce3+, respectively. Because of the overlap spectral range between the Sr3Al2O5Cl2:Eu2+ and Sr3Al2O5Cl2:Ce3+ phosphors, the energy transfer (ET) from Ce3+ to Eu2+ occurred. The related ET process was discussed in detail. Moreover, the incorporation of Ce3+ could significantly prolong the afterglow duration of Sr3Al2O5Cl2:Eu2+ phosphor, which was due to the increase of trap concentration. Consequently, 6 h of the afterglow duration could be observed in Sr3Al2O5Cl2:1.0%Eu2+, 0.5%Ce3+ sample, exhibiting much longer than that of Sr3Al2O5Cl2: 1.0%Eu2+ (3 h). From the afterglow decay curves and the fitting results, the optimal concentration of Ce3+ for the enhanced afterglow property was experimentally determined to be 0.5%.  相似文献   

19.
Stoichiometric phosphors LiGd1−xEux(PO3)4(x=0, 0.2, 0.4, 0.6, 0.8, 1.0) were synthesized via traditional solid state reactions. The X-ray powder diffraction measurements show that all prepared samples are isostructural with LiNd(PO3)4. Eu3+ doped phosphors can emit intense reddish orange light under the excitation of near ultraviolet light from 370 to 410 nm. The strongest two at 591 and 613 nm can be attributed to the transitions from excited state 5D0 to ground states 7F1 and 7F2, respectively. The typical chromaticity coordinates (x=0.620, y=0.368) of Eu3+ doped phosphors are in red area. The recorded absorbance spectra indicate that there is effective absorbance in the near UV region for all Eu3+ doped samples. Present research indicates that LiGd1–xEux(PO3)4 is a promising phosphor for white light-emitting diodes.  相似文献   

20.
Rare-earth phosphors are commonly used in display panels, security printing, and fluorescent lamps, and have potential applications in lasers and bioimaging. In the present study, Eu3+- and Dy3+-codoped uniform-shaped Y2O3 submicron particles were prepared using the urea homogeneous precipitation method. The structure and morphology of the resulting particles were characterized by X-ray diffraction, field emission scanning electron microscope, and field emission transmission electron microscope, whereas their optical properties were monitored by photoluminescence spectroscopy. The room-temperature luminescence color emission of the synthesized particles can be tuned from red to yellow by switching the excitation wavelength from 254 to 350 nm. The luminescence intensities of red and yellow emissions could be altered by varying the dopant concentration. Strong quenching was observed at high Eu3+ and Dy3+ concentrations in the Y2O3 host lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号