首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
双端包层抽运光纤激光器实现137 W激光输出   总被引:5,自引:0,他引:5  
采用包层抽运技术的双包层光纤激光器能够在内包层中注入高的抽运光功率 ,从而获得高功率的激光输出。光纤激光器具有接近量子极限的光 光转换效率 ;其面积 体积比很大 ,纤芯内高功率激光产生的热量很容易通过光纤表面散出 ,即使在高功率情况下也无需对光纤和谐振腔进行强制冷却 ;纤芯的波导限制使在高功率激光输出下也能够保证高的光束质量。这些独特特点使得高功率双包层光纤激光器成为极具前景的激光器件 ,在高精度激光加工、激光医学、空间技术等领域中逐渐成为主导力量。本课题组运用高功率LD抽运模块 ,采用端面包层抽运掺Yb3+ 双…  相似文献   

2.
为了优化全固态激光的抽运系统,研究抽运系统参数对激光输出特性的影响。以半导体激光端面抽运Nd∶YVO4晶体的全固体激光器设计为例,实验对比了采用不同波长(880 nm和808 nm)和不同光纤芯径(100 μm和200 μm)的半导体激光抽运源对激光输出功率、效率和光束质量等特性参数的影响。结果表明采用880 nm直接抽运技术结合采用小光纤芯径长焦深的抽运系统,可减少斯托克斯光子亏损,实现抽运光模式和激光腔模式的匹配来提高效率和激光输出光束质量。  相似文献   

3.
采用掺杂粉末直拉棒工艺制备了一种小芯径的掺镱光子晶体光纤。以此光纤为增益介质,抽运波长为976 nm,实现了波长为1045 nm激光连续输出。并研究了抽运功率与光纤长度对激光性能的影响。受限于光纤的小芯径尺寸,该光纤激光器系统激光输出功率最大仅为0.42 W,激光斜率效率仅为33%。实验结果表明,利用掺杂石英粉末直拉棒工艺制备的掺镱光子晶体光纤有望应用于高功率光纤激光器的研制。  相似文献   

4.
高功率光纤激光器抽运耦合技术研究进展   总被引:2,自引:0,他引:2  
综述了双包层光纤激光器端面、侧面和集中抽运耦合技术,分析表明侧面抽运耦合技术比端面抽运耦合技术更有利于获得高功率输出,其中分布包层抽运耦合技术是很理想的一种侧面抽运耦合方式.阐述了高功率光纤激光器的特点并介绍了光子晶体光纤和螺旋芯光纤的抽运耦合方式.  相似文献   

5.
高功率光纤激光器抽运耦合技术研究进展   总被引:2,自引:0,他引:2  
综述了双包层光纤激光器端面,侧面和集中抽运耦合技术,分析表明侧面抽运耦合技术比端面抽运耦合技术更有利于获得高功率输出,其中分布包层抽运耦合技术是很理想的一种侧面抽运耦合方式。阐述了高功率光纤激光器的特点并介绍了光子晶体光纤和螺旋芯光纤的抽运耦合方式。  相似文献   

6.
付圣贵  刘晓娟 《中国激光》2008,35(s2):19-21
利用GaAs晶体作为可饱和吸收体, 实现了掺镱光子晶体光纤激光器的被动调Q输出。实验用掺杂光子晶体光纤的芯径为21 μm, 数值孔径为0.04, 在实现了大模场面积的同时, 保证了激光器的单模运转, 从而得到高光束质量的激光输出。实验使用高功率半导体激光器作为抽运源, 采用自行研制的耦合系统将抽运光耦合进入光子晶体光纤的包层中。在激光器平均输出功率为5.8 W时, 实验得到的最短输出激光脉冲为80 ns, 重复频率为6.7 kHz。  相似文献   

7.
提出了以硅为基质、高折射率铋化合物作为纤芯的多固体芯集束型光子晶体光纤(PCF).该类光纤利用全内反射型机制将传输光场约束在高折射率固体棒芯中,并能输出相同强度的光,通过数值模拟分析了集束六芯六角形和集束八芯四方形两种光子晶体光纤的有效模场面积和非线性系数随抽运波长以及纤芯直径的变化规律,证明了这种光纤同时具有等效的高非线性和大的有效模场面积的特性,可以用于实现高功率频率变换.  相似文献   

8.
江丽  宋锐  何九如  侯静 《中国激光》2022,(9):205-206
<正>超连续谱激光具有宽光谱和高亮度的特性,被广泛应用于光学相干断层扫描、生物光学、光谱检测等领域。目前,产生可见光至近红外波段超连续谱的常用方案是利用脉冲光纤激光器泵浦光子晶体光纤。利用该方案, 2018年,中国工程物理研究院报道了563W的高功率超连续谱激光,输出光谱范围为665~1750 nm。在该方案中,高功率皮秒脉冲光纤激光器输出尾纤(纤芯直径约为20μm)与光子晶体光纤(纤芯直径约为5μm)之间较大的模场失配以及光子晶体光纤较小的纤芯直径是制约输出超连续谱功率提升的主要原因。  相似文献   

9.
郭云霄  巩马理  薛海中  李晨  闫平  柳强  陈刚 《激光技术》2006,30(6):570-573,577
针对激光晶体不同的表面处理方式,建立了多个半导体激光器阵列同时抽运激光晶体时吸收抽运光功率分布的数学模型,采用光线追迹的方法计算了半导体激光器环形侧面抽运高功率固体激光器中激光晶体对抽运光的吸收分布情况。重点根据不同表面处理方式的激光晶体对抽运光的吸收情况,分析了晶体表面处理对抑制ASE效应和获得高效率激光输出的影响。结果表明,晶体表面散射率的提高,能够有效地抑制ASE效应的产生,但同时会降低抽运光与激光输出的模式匹配程度,降低激光器的效率。  相似文献   

10.
光纤激光器相干组束是目前实现高功率光纤激光系统的重要技术途径,利用本文的方法得到了双包层结构的双芯光子晶体光纤的相干合成输出,纤芯直径为2.05μm,空气孔间距Λ为2.07μm,空气孔直径d为1.44μm,测得了明显的相干条纹,光纤输出达30μW,这一成果为多芯光子晶体光纤激光器的发展开拓了新的方向.  相似文献   

11.
激光晶体材料的发展和思考   总被引:2,自引:0,他引:2  
在分析激光晶体研究现状的基础上,指出其未来应用及主要发展趋势:高功率、大能量激光晶体;中红外激光晶体;蓝绿紫和可见光激光晶体;LD抽运超快激光增益和放大介质晶体。以上四个方向中,高功率、大能量全固态激光晶体材料和LD抽运超快激光晶体材料又是覆盖其他方向、带有共性基础科学问题的关键方向。着重报道了LD抽运超快激光晶体材料的最新研究进展。  相似文献   

12.
多芯光子晶体光纤(MCPCF)是实现高功率超连续谱输出的一个重要研究方向,而如何解决多芯光子晶体光纤的低损耗熔接问题是实现全光纤化的关键。介绍了一种通过选择性空气孔塌缩技术实现七芯光子晶体光纤低损耗熔接的方法。数值模拟了处理前后七芯光子晶体光纤的模场特性以及对熔接损耗的影响。实验上对七芯光子晶体光纤进行了选择性空气孔塌缩处理,实现了和纤芯直径为15μm的双包层光纤的低损耗熔接,损耗值为0.22dB。  相似文献   

13.
近年来迅速发展的中红外高功率激光技术迫切需要具有输出光束质量高、质量轻、结构紧凑等特性的中红外光纤介质,用于实现激光产生、传输等。在中红外玻璃中,硫系玻璃具有最宽的透光范围;同时,硫系玻璃又具有最高的折射率和非线性折射率系数,因此它们被认为是理想的产生和传输中红外激光的光纤基质。然而,硫系玻璃网络结构由弱化学键组成,使得硫系玻璃光纤具有较低的激光损伤阈值,这与高功率激光应用需求相矛盾。在不牺牲光纤输出光束质量的前提下,大模场光子晶体光纤技术是优选的实现功率提升的技术方案。本文首先介绍了中红外激光的高功率应用需求和中红外光纤材料低激光损伤阈值之间存在的矛盾,继而对面向中红外高功率激光应用的超大模场硫系玻璃光子晶体光纤的发展进行了综述,详细描述了超大模场硫系玻璃光子晶体光纤设计、制备、材料选择、光纤性能表征等过程,并对其应用前景和存在的技术瓶颈进行了讨论和展望。结果表明,超大模场硫系玻璃光子晶体光纤有望被应用于百瓦级中红外高功率激光应用场景中。  相似文献   

14.
<正>超连续谱光源是一种特殊的光源,具有光谱宽、亮度高、空间相干性好等特点,在照明、通信、医学、军事等诸多领域具有广泛的应用前景。近几年,在突破了超短脉冲抽运源、抽运光耦合、普通光纤与光子晶体光纤低损耗熔接、高功率光纤激光器热管理等一系列关键技术难题之后,高功率超短脉冲光纤激光超连续谱研究进展显著。评价超连续谱指标参数除了功率、光谱宽度之外,还有一个参数——平坦度,平坦度从某种意义上说是描述超连续谱谱宽范  相似文献   

15.
光子晶体光纤飞秒激光技术研究进展   总被引:3,自引:0,他引:3  
光子晶体光纤自诞生至今的十几年来得到了快速发展,不同结构和各具特色的光子晶体光纤层出不穷。以应用于飞秒激光技术的各种光子晶体光纤为主线,介绍了目前基于光子晶体光纤飞秒激光技术的实验研究进展,尤其是高功率、高能量飞秒激光系统的研究现状和发展方向。  相似文献   

16.
掺镱大模场光子晶体光纤在高峰值功率超快激光放大器中有着重要的应用价值,其研究得到了广泛关注。首先简要介绍了国内外掺镱大模场光子晶体光纤的研究进展,阐述了掺镱大模场光子晶体光纤的基本设计思路,对比说明了保偏型掺镱光子晶体光纤的设计制备方法。重点介绍了近十年来中国科学院上海光学精密机械研究所在掺镱大模场光子晶体光纤方面的研究进展。包括掺镱大模场光子晶体光纤的纤芯折射率大小和均匀性控制、光子晶体光纤微结构控制等关键技术。采用自主研制的四种芯径为40~100μm的掺镱大模场光子晶体光纤开展了皮秒脉冲激光放大实验。利用40μm芯径的保偏掺镱光子晶体光纤实现了平均功率为100 W、光束质量因子(M2)小于1.4的稳定输出,偏振消光比为12 dB。利用100μm芯径的保偏掺镱大模场光子晶体光纤实现了M2小于1.5的高光束质量脉冲放大。上述研究为掺镱大模场光子晶体光纤的国产化应用奠定了基础。  相似文献   

17.
多芯光子晶体光纤(Photonic Crystal Fiber,PCF)具有设计更灵活、大模场面积、显著的非线性效应以及纤芯耦合等优势.介绍了国内高校对多芯光子晶体光纤研究的状况,主要包括高功率超连续谱、高功率光纤激光器和光器件三个研究方向.同时,讨论了多芯PCF的可调结构参数.  相似文献   

18.
利用双包层掺镱光子晶体光纤(DC-PCF)作为增益光纤,设计制作了全光纤双包层光子晶体光纤放大器。实验制作了匹配DC-PCF的(6+1)×1端面抽运耦合器,6根抽运光纤采用包层直径、纤芯直径分别为105μm和125μm(数值孔径为0.22)的多模光纤,信号光纤采用普通单模光纤。利用套管法制作端面抽运耦合器,并将制作完成的耦合器与DC-PCF直接熔接,再对光子晶体光纤进行锥棒熔接,锥棒输出端面镀1000~1100nm的增透膜,以防止激光反馈对整个放大系统产生影响。对全光纤双包层光子晶体光纤放大器进行测试,使用976nm的抽运源提供能量,信号光使用波长为1064nm、功率为2 W的连续光。当抽运功率达到最大值151.83 W时,最大输出功率为108.1 W,斜率效率为72.7%。输出光斑为很好的基模光斑,体现了光子晶体光纤在具有大模场面积的同时仍能保持基模传输的优良特性。  相似文献   

19.
采用包层抽运技术的双包层光纤激光器能够在内包层中注入高的抽运功率 ,从而可以获得高功率的激光输出。内包层的非圆对称结构可以使绝大部分抽运光多次通过掺杂稀土元素的纤芯 ,足够长度的光纤能够使抽运光充分吸收 ,因此能够获得接近量子极限的光 光转换效率。此外 ,其面积 体积比很大 ,纤芯内高功率的激光产生的热量很容易通过光纤表面散出 ,即使在高功率情况下也无需对其谐振腔进行强制冷却。纤芯的限制使高功率激光输出时也能保证高的光束质量。这些特点使高功率双包层光纤激光器成为新一代激光器件 ,在高精度激光加工、激光医学、激…  相似文献   

20.
光子晶体光纤的出现,为高功率光纤激光器的关键技术-大模区光纤的实现提供了新途径。基于铒镱共掺磷酸盐材料的包层掺杂新结构出现,为实现更加紧凑的光纤激光器提供了可能。常规高功率光纤激光器中的抽运技术,谐振腔技术和相干组束技术也在不断融入高功率光子晶体光纤激光器。高功率光子晶体光纤激光器的调Q和锁模输出也已经实现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号