共查询到18条相似文献,搜索用时 78 毫秒
1.
超宽带是一种新颖的高速无线通信技术。其过高的带宽给采样带来了困难,压缩感知理论提供了一种可行的低速采样方法。针对目前的压缩感知超宽带信道估计方法必须假设信道稀疏度已知,论文提出了基于贝叶斯压缩感知理论的超宽带信道估计方法。将超宽带信道估计转化为压缩感知理论中的重构问题,并使用贝叶斯压缩感知方法进行重构,得到信道估计值及其误差范围,最终实现信息解调。贝叶斯压缩感知理论将稀疏贝叶斯学习理论引入到压缩感知中,给需要重构向量中的每个值设置受超参数控制的后验概率密度函数,在超参数的更新过程中,零值所对应的超参数将趋向于无穷大,与之对应的后验概率将趋向于零,通过这种方法剔除非重要多径,自适应地找出信道向量中的重要多径,并使用回归算法进行重构。实验结果表明在信道稀疏度未知的情况下,该方法能够对原信道进行有效的重构。 相似文献
2.
3.
受感知信息算子矩阵相干性和噪声的影响,压缩感知超宽带(UWB)信道估计误差过大.为此,首先提出利用压缩观测信号加权构造自适应感知信息(ASI)算子矩阵的方法,ASI算子矩阵不仅具有弱相干性,而且包含观测信息,适用于重建算法选择最优稀疏表示原子.其次提出修正稀疏度自适应匹配追踪(SAMP)算法,无需稀疏度或信噪比的先验信息实现压缩感知稀疏信号准确重建.最后基于ASI算子矩阵和修正SAMP算法提出非凸化压缩感知UWB信道估计方法,理论分析和仿真结果均表明该方法能在低信噪比和极低压缩比下实现UWB信道的准确估计. 相似文献
4.
超宽带信号由于功率谱密度较低和传输多径复杂,准确的信道估计十分重要。考虑其过高带宽带来的采样难度较高的问题,压缩感知理论提供了一种可行的低速采样方法。而目前常用的随机投影矩阵与超宽带信道稀疏变换矩阵相关度较高,算法必须在降维比较高时才能达到重构要求,采样速率依然较高。针对上述问题,提出使用贝叶斯压缩感知理论中的自适应投影矩阵设计方法进行超宽带信道估计。贝叶斯压缩感知理论给信道向量中的每个值设置受超参数控制的后验概率密度,计算信道向量的统计特性,并根据协方差矩阵计算新的投影向量,该投影向量可以使重构解的微分熵下降最快。通过这种自适应的投影矩阵设计方法,可以利用较少的采样值进一步地提高重构解的可信度,达到进一步降低采样速率的目的。实验结果表明该方法相对于现有的压缩感知重构算法可以在较低的降维比条件下达到较好的重构效果,显著降低了采样速率。 相似文献
5.
6.
基于压缩感知的超宽带信道估计方法的研究 总被引:2,自引:0,他引:2
压缩感知(Compressed Sensing, CS)理论可以从较少的观测样本中恢复稀疏信号。针对超宽带(Ultra- WideBand, UWB)信道的稀疏特性,将压缩感知理论应用于UWB系统的信道估计中,能够有效地降低系统的采样速率。该文针对UWB信道的特点对过完备字典库和观测矩阵进行设计,提出了一种滤波矩阵估计算法。然后,分别利用丹茨格选择器(Dantzig Selector, DS),基追踪降噪(Basis Pursuit De-Noising, BPDN)算法和正交匹配跟踪(Orthogonal Matching Pursuit, OMP)算法实现信号检测,进一步给出UWB信道估计中CS重建算法的选择建议。基于IEEE 802.15.4a信道模型的仿真结果表明,该算法同随机观测算法的检测结果相比,能够在较低的采样速率下获得更好的误码率性能。 相似文献
7.
正交频分复用(OFDM)系统中,由于频率发生选择性衰落会导致信道在数据传输中产生符号间干扰,因此接收机往往需要知道信道状态信息。而在海上通信的情况下,信道传输会受到多种外界因素的干扰,往往需要预先进行信道探测估计。为了提高估计性能,该文提出一种基于奇异值分解优化观测矩阵的快速贝叶斯匹配追踪稀疏信道估计优化算法(FBMPO),该算法不仅能够充分考虑海上通信的信道稀疏性,也能够降低信道的不确定性带来的影响。计算机仿真实验表明,与传统的信道估计算法相比,该算法能够提高信道估计的精确度。
相似文献8.
脉冲超宽带(IR-UWB)能够在无线定位中取得较高的精确度,但是存在ADC瓶颈问题,利用压缩感知理论(CS)对信号压缩采样可以显著降低信号采样速率。本文将贝叶斯压缩感知应用于UWB单站定位,接收节点利用L型天线阵列接收信号,对信号压缩采样,由贝叶斯压缩感知重构算法(BCS)还原信号并估计时延参数,最后由定位算法解算位置信息。基于IEEE 802.15.4a信号模型的仿真结果表明,该方法最低能以20%的奈奎斯特采样速率获得分米级的定位精确度。 相似文献
9.
稀疏度自适应匹配追踪(SAMP)算法重构过程中存在其迭代终止条件设置不够合理的情况,需要对SAMP算法进行改进.在信道稀疏度未知时,改进SAMP算法依据残差之差的相对能量小于设定的停止门限来终止迭代过程,通过自适应调整可变步长逐步逼近信道的稀疏度,从而实现了重构UWB信道.仿真结果表明,改进SAMP算法低信噪比时重构精度高于SAMP算法,具有更好的重构性能和广泛的实用性. 相似文献
10.
11.
Compressed Sensing (CS) offers a method to solve the channel estimation problems for an underwater acoustic system, based on the existence of a sparse representation of the treated signal and an overcomplete dictionary with a set of non-orthogonal bases. In this paper, we proposed a new approach to optimize dictionaries by decreasing the average measure of the mutual coherence of the effective dictionary. A fixed link between the average mutual coherence and the CS performance is indicated by designing three factors : operating bandwidth, the number of pilot subcarriers, and coherence bandwidth. Both the Orthogonal Matching Pursuit (OMP) and the Basis Pursuit De-Noising (BPDN) are compared to the Dantzig Selector (DS) for different Signal Noise Ratio (SNR) and shown to benefit from the newly designed dictionary. Numerical simulations and experimental data of an OFDM receiver are used to evaluate the proposed method in comparison with the conventional Least-Square (LS) estimator. The results show that the dictionary with a better condition considerably improves the performance of the channel estimation. 相似文献
12.
该文采用基于概率模型的贝叶斯压缩感知方法,从最大后验概率角度,给出了压缩信道感知的一般流程。在此基础上,利用自适应贝叶斯压缩感知将信号的重构和观测矩阵的设计结合,使这两个环节不再相互独立。同时,提出一种基于最优观测矩阵的自适应贝叶斯压缩感知联合机制,通过减少观测矩阵的相关度以及对观测矩阵的自适应设计,使得信道的重构效果更佳。另外可利用重构过程中得到的差错栏,对重构精确度进行衡量。仿真表明:在相同的实验条件下,该联合机制相比传统的重构算法,具有更好的抗噪声能力和重构精度。 相似文献
13.
基于最优观测矩阵的压缩信道感知 总被引:2,自引:0,他引:2
信道估计技术作为获得信道衰落信息的方法,是提高无线信道传输接收性能的关键技术。而物理多径信道固有的稀疏性,使得将压缩感知(CS)理论用于稀疏多径信道的估计成为可能。由于传统的线性估计方法没有考虑信道的固有稀疏性,因而在训练序列数目较少的情况下,压缩信道估计的重构效果要明显优于传统的最小二乘估计方法,在获得同样估计性能的情况下,需要的训练序列长度也大大减少,提高了频谱资源利用率,体现了压缩信道估计出色的估计性能。本文在应用CS理论进行稀疏信道估计的过程中,通过减小观测矩阵的列向量相关性,产生最优观测矩阵的方法,从而让压缩信道估计的性能得到进一步的改善。 相似文献
14.
针对传统稀疏重构算法需要信道稀疏度先验信息、复杂度高、不利于实际应用的问题,提出了一种新的基于波束空间分解的稀疏度自适应毫米波信道估计算法。该算法利用毫米波信道稀疏性的特点对信道进行波束空间分解,构造基于码本的感知矩阵,获得l1范数约束问题模型;其次结合分段弱匹配追踪算法,采用弱阈值从感知矩阵筛选原子,再通过分组选择机制对选择的原子进行二次优化;最后根据最小二乘法估计出毫米波信道。仿真结果表明,所提算法的估计精度和复杂度在低信噪比和低训练长度情况下明显优于传统匹配追踪算法。 相似文献
15.
传统方法压缩感知算法截取训练序列最后未被数据干扰固定部分作为观测矩阵,该方法为了抵抗最差的信道而浪费了大量的可用观测数据。在此基础上提出了一种自适应压缩感知的信道估计算法,首先对训练序列进行自适应检测,得到整个未受干扰的观测矩阵,再用压缩感知算法计算信道估计。仿真结果表明,这种基于自适应压缩感知的信道估计算法大幅提高了信道估计的准确性。 相似文献
16.
可靠的无线通信需要准确地知道下层信道的信息,因此需要进行信道估计。而许多真实信道表现为仅有一些相对较少的非零信道系数的稀疏多径信道。对于稀疏多径信道的估计,传统方法例如最小二乘法,没有利用稀疏信道本身的低维度特性,所需训练序列的长度较长,因此估计代价较大。基于压缩感知的信道估计方法,利用稀疏先验信息,能较大地缩短所需训练序列的长度,获得较好的估计效果。该文结合压缩感知观测矩阵的特点,证明了当训练序列的长度不长于信道冲激响应的长度,且托普利兹观测矩阵的行数小于列数时,观测矩阵仍然满足有限等距性质;明确提出了稀疏多径信道估计中所使用的观测矩阵的构造条件。实验结果验证了这种优化了的托普利兹观测矩阵的可行性和实用性。 相似文献
17.
针对无线信道的时域稀疏性以及稀疏度未知的问题,文章将压缩感知技术应用到正交频分复用(OFDM)系统信道估计中,提出了一种稀疏度自适应正交匹配追踪信道估计算法。算法利用离散傅里叶变换(DFT)信道估计算法对循环前缀内和外的噪声进行处理,估计得到的信道频率响应作为正交匹配追踪(OMP)算法稀疏迭代终止的判断条件,实现稀疏度自适应信号重建。同时在原子预选阶段,采用Dice系数准则代替内积准则作为相关性度量准则,可达到更优的估计性能。仿真结果表明,该算法相比于传统的压缩感知信道估计算法具有较好的性能,可以提高系统的归一化均方误差(NMSE)和误码率(BER)性能。 相似文献
18.
基于压缩感知设计适用于60 GHz毫米波通信系统的信道估计方案,深入研究了正交匹配追踪(OMP)算法和正则正交匹配追踪(Regularized OMP)算法的60 GHz信道估计性能;在此基础上,充分发掘60 GHz无线多径信道所呈现出的分簇特性,提出一种新颖的基于簇分级的稀疏压缩感知重构算法。新算法在有效减少重构迭代次数的前提下,亦能显著降低信道估计误差。综合对比分析了基于簇分块稀疏压缩感知重构算法和现有压缩感知算法在60 GHz信道估计应用中的重构性能,仿真结果表明,压缩感知算法可有效应用于60 GHz系统信道估计,而新设计的基于簇分级的稀疏压缩感知算法则在估计精度和实现复杂度方面具更优越性能。 相似文献