首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Wireless mesh networks (WMNs) extend the limited transmission coverage of wireless LANs by enabling users to connect to the Internet via a multi-hop relay service provided by wireless mesh routers. In such networks the quality of experience (QoE) depends on both the user location relative to the Internet gateway and the traffic load. Various channel access or queue management schemes have been proposed for achieving throughput fairness among WMN users. However, delay and bandwidth utilization efficiency of such schemes may be unacceptable for real-time applications. Accordingly, the present study proposes a proportional bandwidth allocation scheme with a delay constraint consideration for enhancing the QoE of users of WMNs based on the IEEE 802.11e standard. An analytical model of the proposed scheme is provided. Moreover, the performance of the proposed scheme is systematically compared with that of existing bandwidth allocation methods. The simulation results show that the proposed scheme outperforms previously proposed schemes in terms of both an improved throughput fairness among the WMN users and a smaller end-to-end transmission delay.  相似文献   

2.
Wireless mesh networks (WMN) typically employ mesh routers that are equipped with multiple radio interfaces to improve network capacity. The key aspect is to cleverly assign different channels (i.e., frequency bands) to each radio interface to form a WMN with minimum interference. The channel assignment must obey the constraints that the number of different channels assigned to a mesh router is at most the number of interfaces on the router, and the resultant mesh network is connected. This problem is known to be NP-hard. In this paper we propose a hybrid, interference and traffic aware channel assignment (ITACA) scheme that achieves good multi-hop path performance between every node and the designated gateway nodes in a multi-radio WMN network. ITACA addresses the scalability issue by routing traffic over low-interference, high-capacity links and by assigning operating channels in such a way to reduce both intra-flow and inter-flow interference. The proposed solution has been evaluated by means of both simulations and by implementing it over a real-world WMN testbed. Results demonstrate the validity of the proposed approach with performance increase as high as 111%.  相似文献   

3.
In this paper, we propose a probability-statistical capacity-prediction scheme to provide probabilistic quality-of-service (QoS) guarantees under the high traffic load of IEEE 802.11 wireless multimedia Mesh networks. The proposed scheme perceives the state of wireless link based on the MAC retransmission statistics and calculates the statistical channel capacity especially under the saturated traffic load. Via a cross-layer design approach, the scheme allocates network resource and forwards data packets by taking the interference among flows and the channel capacity into consideration. Extensive experiments have been carried out on the basis of IEEE 802.11 protocols in order to demonstrate the superiority of the proposed scheme over the existing location-based QoS optimization delivery algorithm in terms of retransmission count, successful delivery rate, and end-to-end delay on the condition of time-varying multi-hop wireless links.  相似文献   

4.
In recent time, a great deal of research effort has been directed toward promptly facilitating post-disaster communication by using wireless mesh networks (WMNs). WMN technology has been considered to be effectively exploited for this purpose as it provides multi-hop communication through an access network comprising wireless mesh routers, which are connected to the Internet through gateways (GWs). One of the critical challenges in using WMNs for establishing disaster-recovery networks is the issue of distributing traffic among the users in a balanced manner in order to avoid congestion at the GWs. To overcome this issue, we envision a disaster zone WMN comprising a network management center. First, we thoroughly investigate the problem of traffic load balancing amongst the GWs in our considered disaster zone WMN. Then, we develop traffic load distribution techniques from two perspectives. Our proposal from the first perspective hinges upon a balanced distribution of the bandwidth to be allocated per user. On the other hand, our second perspective considers the dynamic (i.e., varying) bandwidth demands from the disaster zone users that requires a more practical and refined distribution of the available bandwidth by following an intelligent forecasting method. The effectiveness of our proposals is evaluated through computer-based simulations.  相似文献   

5.
随着无线网络技术的发展,无线mesh网凭借其多跳通信能力为拓宽WiFi网络的覆盖率提供了有效的途径。利用低发射功率来提高覆盖率和容量的能力,使其在普遍存在的宽带接入中扮演重要角色。凭借其独特的优势,WMN发展非常迅速,并广泛应用于众多领域。为了更好的说明WMN领域存在的挑战,详细描述了无线mesh网的MAC层和网络层研究状况,并且提出了可能提高多跳网络吞吐量的新协议。  相似文献   

6.
In wireless multimedia communications, it is extremely difficult to derive general end-to-end capacity results because of decentralized packet scheduling and the interference between communi-cating nodes. In this paper, we present a state-based channel capacity perception scheme to provide sta-tistical Quality-of-Service (QoS) guarantees under a medium or high traffic load for IEEE 802.11 wire-less multi-hop networks. The proposed scheme first perceives the state of the wireless link from the MAC retransmission information and extends this information to calculate the wireless channel capaci-ty, particularly under a saturated traffic load, on the basis of the interference among flows and the link state in the wireless multi-hop networks. Finally, the adaptive optimal control algorithm allocates a net-work resource and forwards the data packet by tak-ing into consideration the channel capacity deploy-ments in multi-terminal or multi-hop mesh net-works. Extensive computer simulations demonstrate that the proposed scheme can achieve better per-formance in terms of packet delivery ratio and net-work throughput compared to the existing capacity prediction schemes.  相似文献   

7.
无线Mesh网络(WMN)是一种特殊的Adhoc网络,具有分层的网络结构,其传输骨干网具有多跳、拓扑稳定、无供电约束、业务流量相对汇聚等特性。提高WMN频谱空间复用度是增加网络容量有效的方法,而其设计的关键是有效控制无线链路间的干扰范围。基于多信道的组网技术是WMN关键技术之一,其核心是信道的分配,通过合理的信道分配以获得最大信道利用率。WMN中路由度量的选取需要考虑多跳无线链路间的相互干扰,而通过采用负载均衡路由技术可以均衡网络资源的使用,从而提高网络容量和节点的吞吐率。  相似文献   

8.
张文柱  李建东  刘凯 《电子学报》2002,30(8):1175-1179
本文基于有效竞争预约接入、无冲突轮询传输的思想提出了在多跳分布式无线网络中支持节点移动性和多跳网络结构的依据用户妥善安排的多址接入(UPMA)协议.该协议能够保证发送节点快速接入信道,从而大大提高信道的使用效率.用仿真方法研究了多跳分布式无线网络中采用该协议时的网络性能.结果表明,UPMA协议可以提供较高的通过量、较低的平均分组时延和较小的平均分组丢失率.  相似文献   

9.
Wireless Mesh Networks (WMN) with multiple radios and multiple channels are expected to resolve the capacity limitation problem of simpler wireless networks. However, optimal WMN channel assignment (CA) is NP complete, and it requires an optimal mapping of available channels to interfaces mounted over mesh routers. Acceptable solutions to CA must minimize network interference and maximize available network throughput. In this paper, we propose a CA solution called as cluster‐based channel assignment (CBCA). CBCA aims at minimizing co‐channel interference yet retaining topology through non‐default CA. Topology preservation is important because it avoids network partitions and is compatible with single‐interface routers in the network. A ‘non‐default’ CA solution is desired because it uses interfaces over different channels and reduces medium contention among neighbors. To the best of our knowledge, CBCA is a unique cluster‐based CA algorithm that addresses topology preservation using a non‐default channel approach. The main advantage of CBCA is it runs in a distributed manner by allowing cluster heads to perform CA independently. CBCA runs in three stages, where first the WMN nodes are partitioned into clusters. The second stage performs binding of interfaces to neighbors and third stage performs CA. The proposed algorithm improves over previous work because it retains network topology and minimizes network interference, which in turn improves available network throughput. Further, when compared with two other CBCA algorithms, CBCA provides better performance in terms of improved network interference, throughput, delay, and packet delivery ratios when tested upon network topologies with various network densities and traffic loads. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
边缘云增强光无线融合网络中,存在传统节能机制与卸载业务不匹配的问题。该文提出一种带有负载转移的光网络单元卸载协同休眠机制。通过分析当前光网络单元负载,结合无线域多跳传输时延和目标光网络单元的报告帧发送时刻,进而确定休眠和目的光网络单元完成负载转移。然后光网络单元协同考虑边缘服务器的回传数据到达时刻和无线域控制帧的发送时刻,选取最合适的休眠时长以减少控制开销。仿真结果表明,所提机制在有效降低网络能耗的同时能保证卸载业务的时延性能。  相似文献   

11.
Jun  Xiaodong  Dharma P.   《Ad hoc Networks》2006,4(5):651-668
With an increasing popularity of DCF based wireless LAN, the modeling of 802.11 distributed coordination function (DCF) has attracted lots of research attention. Existing analysis of 802.11 DCF has been focused on the determination of the throughput and the packet delay under saturated traffic and ideal channel conditions. Although some recent papers address the saturated performance under a simple uniform error model, they can hardly capture the impact of bursty characteristics of wireless fading on the performance of 802.11 DCF. This paper presents exact formulae for the throughput and the delay in DCF for various traffic conditions when either saturated or unsaturated traffic load is present. A two-state Markov channel model is incorporated to present the bursty characteristics of channel errors. With our analysis, the impact of bursty channel error on unsuccessful transmission probability and the DCF performance can be determined. The results of our analytical framework reveal that the four-way handshaking scheme does not improve throughput substantially for light traffic load. However, for heavy traffic load, the four-way handshaking scheme is advantageous as compared to the basic access scheme. Also, extensive simulation is done to substantiate the accuracy of our analytical model.  相似文献   

12.
张天宝  白勇 《通信技术》2012,45(8):94-96,100
利用无线Mesh网多跳传输、灵活组网的特点和VoIP通信性能良好且资费低廉的优势,构建基于无线Mesh网的VoIP通信系统,通过应用层性能测试软件IxChariot对系统的整体性能进行了专业测试,分析MOS值、时延、时延抖动及丢包率4种VoIP通信系统关键性能指标,最后测试了分别采用G.711u、G.711a、G.723.1-ACELP、G.723.1-MPMLQ、G.726及G.729这6种常用语音压缩编码算法时VoIP通信系统的性能,研究结果显示无线Mesh网可以很好的支持VoIP通信系统。  相似文献   

13.
Sensor nodes are thrown to remote environments for deployment and constitute a multi-hop sensor network over a wide range of area. Users hardly have global information on the distribution of sensor nodes. Hence, when users request state-based sensor readings such as temperature and humidity in an arbitrary area, networks may suffer unpredictable heavy traffic. This problem needs data aggregation to comply with user requirements and manage overlapped aggregation trees of multiple users efficiently. In this paper, spatial and temporal multiple aggregation (STMA) is proposed to minimize energy consumption and traffic load when a single or multiple users gather state-based sensor data from varions subareas through multi-hop paths. Spatial aggregation builds the aggregation tree with an optimal intermediary between a target area and a sink. The broadcast nature of wireless communication is exploited to build the aggregation tree in the confined area. Temporal aggregation uses the interval so that users obtain an appropriate amount of data they need without suffering excess traffic. The performance of STMA is evaluated in terras of energy consumption and area-to-sink delay in the simulation based on real parameters of Berkeley's MICA motes.  相似文献   

14.
Multi-hop wireless networks are becoming popular because of their flexibility and low deployment cost. Emerging technologies such as orthogonal frequency division and multiple in and multiple out have significantly increased the bandwidth of a wireless channel. Further, as device cost decreases, a communication terminal can have multiple radios and transmit/receive data simultaneously, which improves the capacity of a wireless network. This makes the support of real-time multicast applications over multi-hop wireless networks viable and practical. Meanwhile, wireless links are prone to random and burst losses due to multipath fading and cross channel interference, real-time multicast over a wireless network remains a challenging problem. Traditional end-to-end FEC is less efficient in multi-hop wireless networks, as packets may suffer from random or burst losses in more than one hop before they arrive at their destination. In this paper, we advocate the deployment of distributed network-embedded FEC (DNEF) for real-time multicast distribution over multi-hop wireless networks. We first develop a packet loss model of multi-hop wireless networks using a system analysis approach. We then propose a distributed codec placement algorithm and evaluate its performance. Our simulation shows that multicast using DNEF significantly outperforms both traditional multicast and application-level peer-to-peer multicast that can be deployed over multi-hop wireless networks.  相似文献   

15.
Some scheduling algorithms have been designed to improve the performance of multi-hop wireless mesh networks (WMNs) recently. However the end-to-end delay is seldom considered as the complexity of multi-hop topology and open wireless shared channel. This article proposes an efficient delay based scheduling algorithm with the concept of buffer-data- hops. Considering the demand satisfaction factor (DSF), the proposed algorithm can also achieve a good fairness performance. Moreover, with the interference-based network model, the scheduling algorithm can maximize the spatial reuse, compared to those graph-based scheduling algorithms. Detailed theoretical analysis shows that the algorithm can minimize the end-to-end delay and make a fair scheduling to all the links.  相似文献   

16.
Hop-by-Hop Congestion Control Over a Wireless Multi-Hop Network   总被引:5,自引:0,他引:5  
This paper focuses on congestion control over multi-hop, wireless networks. In a wireless network, an important constraint that arises is that due to the MAC (Media Access Control) layer. Many wireless MACs use a time-division strategy for channel access, where, at any point in space, the physical channel can be accessed by a single user at each instant of time. In this paper, we develop a fair hop-by-hop congestion control algorithm with the MAC constraint being imposed in the form of a channel access time constraint, using an optimization-based framework. In the absence of delay, we show that this algorithm are globally stable using a Lyapunov-function-based approach. Next, in the presence of delay, we show that the hop-by-hop control algorithm has the property of spatial spreading. In other words, focused loads at a particular spatial location in the network get "smoothed" over space. We derive bounds on the "peak load" at a node, both with hop-by-hop control, as well as with end-to-end control, show that significant gains are to be had with the hop-by-hop scheme, and validate the analytical results with simulation  相似文献   

17.
A MAC-Layer QoS Provisioning Protocol for Cognitive Radio Networks   总被引:1,自引:1,他引:0  
Due to the proliferation of diverse network devices with multimedia capabilities, there is an increasing need for Quality of Service (QoS) provisioning in wireless networks. The MAC layer protocol with enhanced distributed channel access (EDCA) in the IEEE 802.11-2007 is able to provide differentiated QoS for different traffic types in wireless networks through varying the Arbitration Inter-Frame Spaces (AIFS) and contention window sizes. However, the performance of high priority traffic can be seriously degraded in the presence of strong noise over the wireless channels. Schemes utilizing adaptive modulation and coding (AMC) technique have also been proposed for the provisioning of QoS. They can provide limited protection in the presence of noise but are ineffective in a high noise scenario. Although multiple non-overlapped channels exist in the 2.4 and 5?GHz spectrum, most IEEE 802.11-based multi-hop ad hoc networks today use only a single channel at anytime. As a result, these networks cannot fully exploit the aggregate bandwidth available in the radio spectrum provisioned by the standards. By identifying vacant channels through the use of cognitive radios technique, the noise problem can be mitigated by distributing network traffic across multiple vacant channels to reduce the node density per transmission channel. In this paper, we propose the MAC-Layer QoS Provisioning Protocol (MQPP) for 802.11-based cognitive radio networks (CRNs) which combines adaptive modulation and coding with dynamic spectrum access. Simulation results demonstrate that MQPP can achieve better performance in terms of lower delay and higher throughput.  相似文献   

18.
Wireless infrastructure networks (WINs) provide ubiquitous connectivity to mobile nodes in metro areas. The nodes in such backbone networks are often equipped with multiple transceivers to allow for concurrent transmissions in multiple orthogonal channels. In this study, we develop an analytical model for the estimation of the delay and throughput performance of wireless infrastructure networks employing slotted ALOHA channel access and slotted Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) over multiple channels. The analytical model, which takes into account the correlation due to multi-hop transmissions, approximates the performance observed through simulations accurately.  相似文献   

19.
This paper considers the issue of delay optimal subcarrier allocation in OFDMA wireless networks when the arrivals and channels are stochastic. Our objective is to minimize the long-term average packet delay over multiple time epochs. In previous studies, we have shown that the optimal policy is complicated and unknown. However, based on the insights learned from a simple on-off channel model, we provide heuristic policies that use different degrees of channel and queue state information. More importantly, these examples show how the significance of queue vs. channel state information varies with the traffic load. This is of extreme practical interest when one considers the overhead associated with channel estimation and feedback.  相似文献   

20.
In multi-hop ad hoc networks, besides collision-free transmissions, channel utilization should be also enhanced due to the scarce bandwidth. In this paper, we propose a learning automat-based adaptive polling scheme for medium access scheduling in clustered wireless ad-hoc networks to enhance the channel utilization. In this scheme, each cluster-head takes the responsibility of coordinating intra-cluster transmissions so that no collisions occur. Taking advantage of learning automaton, each cluster-head learns the traffic parameters of its own cluster members. Cluster members are prioritized based on these traffic parameters. Each cluster-head then takes the traffic parameters into consideration for finding an optimal channel access scheduling within its cluster. By the proposed polling scheme, each cluster member is assigned a portion of bandwidth proportional to its need (i.e., traffic load). The results show that the proposed channel assignment policy considerably improves the channel utilization. Simulation experiments also show the superiority of the proposed polling-based medium access scheme over the existing methods in terms of channel utilization, waiting time for packet transmission, and control overhead.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号