首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, we investigate the microstructure, hardness, and corrosion properties of as-cast Al0.5CoCrFeNi alloy as well as Al0.5CoCrFeNi alloys aged at temperatures of 350 °C, 500 °C, 650 °C, 800 °C, and 950 °C for 24 h. The microstructures of the various specimens are investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe X-ray microanalysis (EPMA). The results show that the microstructure of as-cast Al0.5CoCrFeNi comprises an FCC solid solution matrix and droplet-shaped phases (Al–Ni rich phases). At aging temperatures of between 350 and 950 °C, the alloy microstructure comprises an FCC + BCC solid solution with a matrix, droplet-shaped phases (Al–Ni rich phase), wall-shaped phases, and needle-shaped phases (Al–(Ni, Co, Cr, Fe) phase). The aging process induces a spinodal decomposition reaction which reduces the amount of the Al–Ni rich phase in the aged microstructure and increases the amount of the Al–(Ni, Co, Cr, Fe) phase. The hardness of the Al0.5CoCrFeNi alloy increases after aging. The optimal hardness is obtained at aging temperatures in the range 350–800 °C, and the hardening effect decreases at higher temperatures. Both the as-cast and aged specimens are considerably corroded when immersed in a 3.5% NaCl solution because of the segregation of the Al–Ni rich phase precipitate formed in the FCC matrix. Cl? ions preferentially attack the Al–Ni rich phase, which is a sensitive zone exhibiting an appreciable potential difference, with consequent galvanic action.  相似文献   

2.
Chen  Xiu-gang  Qin  Gang  Gao  Xue-feng  Chen  Rui-run  Song  Qiang  Cui  Hong-zhi 《中国铸造》2022,19(6):457-463

To strengthen the face-centered-cubic (FCC) type CoCrFeNi high-entropy alloy (HEA) by in-situ reinforced phase, (CoCrFeNi)100−x(NbB2)x (x=0, 2, 4, 6, 8, at.%) alloys were prepared. Phase constitution, microstructure, tensile mechanical properties of the alloys were studied, and the mechanisms were discussed. Results show that the microstructure of all the reinforced alloys consists of the matrix FCC phase, Laves phase, and (Cr3Fe)Bx phase. The eutectic structure and (Cr3Fe)Bx phases are formed in the interdendritic region, and the eutectic structure is composed of Laves and FCC phases. When x increases from 0 to 8, i.e., with increase of Nb and B elements, the volume fraction of Laves and (Cr3Fe)Bx phases increases gradually from 0 to 5.84% and 8.3%, respectively. Tensile testing results show that the ultimate strength of the alloys increases gradually from 409 MPa to 658 MPa, while the fracture strain decreases from 75% to 1.6%. Fracture analysis shows that the crack originates from the (Cr3Fe)Bx phase. The CoCrFeNi alloys are mainly strengthened by the second phase (Laves phase and boride phase).

  相似文献   

3.
Temperature dependent deformation mechanism of Al0.1CoCrFeNi high entropy alloy (HEA) was studied using monotonic and strain rate jump tests at various test temperatures in a coarse-grained single phase FCC HEA. The tensile properties of Al0.1CoCrFeNi HEA exhibited a modest temperature dependence in the tested range of 300–673 K. At an initial strain rate of 10−5 s−1, the serration type was a function of the test temperature. Furthermore, the strain rate sensitivity of the flow stress changed from positive to zero to negative once the unstable plastic deformation region due to dynamic strain aging was attained.  相似文献   

4.
采用TiZrCuNi钎料对Al0.5CoCrFeNi高熵合金进行钎焊连接后对其进行退火处理,研究了800 ℃下不同退火时间对钎焊接头微观组织和力学性能的影响。通过扫描电镜(SEM)、能谱仪(EDS)分析了钎焊接头微观组织及相组成,利用万能试验机测定了热处理前后试样的剪切性能。结果表明,钎焊接头的典型微观组织分为焊缝区、熔合区和热影响区3部分,焊缝区的组织主要为高熵合金相和BCC结构的FeCr基固溶体;随着退火保温时间的延长,钎焊接头焊缝区灰色相中逐步析出细小的黑色相,对接头起到了一定的弥散强化作用,微观组织更为均匀细小,钎焊接头的剪切强度由未经退火处理的554.8 MPa增加到退火12 h后的581.1 MPa。  相似文献   

5.
采用激光熔覆技术在H13钢表面制备了Al0.1CoCrFeNi高熵合金涂层。结果表明,涂层具有单相FCC结构,涂层与基材结合处组织为柱状晶,其他区域为等轴晶;涂层截面显微硬度最高可达560.2 HV0.5,约为基体硬度的2.5倍。涂层表现出明显优于基材的抗热冲击性能。在600 ℃和800 ℃下分别循环50次后涂层均未产生裂纹,但是在1000 ℃高温下循环7次后,基体断裂,而涂层及涂层与基体结合处并没有明显的裂纹。涂层的摩擦因数和磨损率均低于基材,分析表明涂层以氧化磨损为主,而基材的磨损机理为氧化磨损伴随疲劳磨损的混合机制。  相似文献   

6.
利用X射线衍射仪、扫描电镜、电子背散射衍射、透射电镜以及拉伸实验,研究了FCC结构Al_(0.3)CoCrFeNi高熵合金经90%压下量轧制及退火后的组织和力学性能。结果表明:经轧制及退火(600~1000℃)后,合金发生再结晶,富集Al、Ni原子的有序BCC相优先形成于再结晶FCC相的晶界处,且其体积分数随着退火温度上升先增大后减小。轧制显著强化该合金,随后600℃退火可实现不牺牲均匀塑性而进一步强化该合金的目的,升高退火温度则引起该合金强度下降,塑性增大。经800℃退火后合金表现出较为理想的强度-塑性匹配,其均匀伸长率为34.1%,且抗拉强度可高达935MPa,约是铸态合金(303MPa)的3倍,这主要归结于再结晶组织细化及有序BCC相的析出强化。  相似文献   

7.
Cold-rolling with subsequent annealing was carried out to produce recrystallized structures with different grain sizes in an Al0.5CoCrFeNi high-entropy alloy to systematically investigate the grain growth behavior and varying properties.The results show that recrystallized microstructures can be achieved through an annealing process at 1200℃for 75 min to 16 h,and the average grain size in this study ranges from 5.33 to 30.03 μm.The hardness shown to be affected through grain coarsenin...  相似文献   

8.
9.
High-entropy alloys with high strength and acceptable ductility at both room and elevated temperatures for high-temperature structural applications are desired....  相似文献   

10.
《塑性工程学报》2016,(1):99-103
采用电子背散射衍射技术,研究了室温下CoCrFeMnNi高熵合金在单向拉伸(真应变量为0%~12.4%)过程中的组织和取向演变。结果表明,初始组织表现为等轴晶形貌,退火孪晶形成于等轴晶粒内;拉伸后,等轴晶粒被拉长,小角度晶界急剧增多且主要分布在细小孪晶界和大角度晶界附近。该合金通过位错滑移的方式协调其室温下的拉伸变形。在变形过程中,晶粒取向不均匀转动,但晶粒内基体和孪晶的取向大体上沿着相同的方向转动,基体拉伸轴的转动规律为,反极图112和111附近的基体拉伸轴向111方向转动,符合Taylor模型;反极图中心和101附近的基体拉伸轴向001-111连线转动,符合Sachs模型;反极图001附近的基体拉伸轴转动无明显规律。  相似文献   

11.
为了调控NiFeCoCrMn高熵合金强度和塑性之间的平衡关系,采用传统的热力学加工技术(冷轧和再结晶),通过不同的再结晶退火工艺得到不同程度的位错强化,并对具有不同再结晶比例的合金进行拉伸性能测试.随着再结晶比例的增加,即应变硬化程度的下降,合金的均匀伸长率和加工硬化率显著提高,但屈服强度和抗拉强度降低.尤其在650℃...  相似文献   

12.
Behavior of magnetic domain structure in the course of magnetization reversal of CoPt crystals with optimum hysteresis properties after annealing under tensile stresses has been studied. Magnetic heterogeneities, which were periodically distributed in {100} and {110} planes have been revealed. An electron-microscopic investigation of the structure of the above CoPt crystals has been performed to show that the crystals are in a nanophase stressed-strained state. A connection between the magnetization-reversal mechanism and characteristic properties of the nanophase state of the crystals is discussed. An important role of magnetoelastic energy in the complicated quasi-periodic distribution of magnetization of the CoPt crystals investigated is emphasized.  相似文献   

13.
高熵合金(high entropy alloys,HEA)是金属系统的一个新子集,具有复杂的成分. 使用爆炸焊接工艺将Al0.1CoCrFeNi高熵合金/Cu进行了复合加工,通过扫描电子显微镜和硬度测试表征了爆炸焊接产生的微观结构演变的不均匀特性. 结果表明,爆炸焊接界面在纵向截面上呈现周期性的结构分布,而在横向截面上呈现出不规则的边界,从不同截面可以统计得到相似的波形参数. 通过界面区域的微观结构发现,界面附近具有沿着界面拉长的晶粒,旋涡区具有再结晶的等轴细晶;随着晶粒变形程度的增加,相应区域细晶的比例随之增加. 纳米压痕测试结果表明,界面沿着爆炸焊接方向呈现周期性起伏的硬度分布,且混合区的硬度值介于两侧的硬度之间.  相似文献   

14.
15.
采用冷坩埚悬浮熔炼法制备了Al0.3CoCrFeNiBx(x=0,0.01,0.05,0.1)系列高熵合金。利用X射线衍射仪、电子背散射衍射分析、扫描电子显微镜及附带的波谱仪分析了B的添加对Al0.3CoCrFeNi合金组织结构的影响,研究了Al0.3CoCrFeNiBx合金的显微硬度、室温摩擦磨损性能及室温压缩性能。结果表明:Al0.3CoCrFeNi合金为fcc结构,随着B含量的增加,fcc相基体中晶界处Cr2B析出相逐渐增多,且Cr2B相由颗粒状分布逐渐转变为连续网状分布,致使合金的硬度、耐磨性和屈服强度均逐渐提高。可见,Cr2B析出相弥散强化作用显著,Al0.3CoCrFeNiB0.1综合性能更佳。  相似文献   

16.
An equiatomic CoCrFeMnNi high-entropy alloy, which crystallizes in the face-centered cubic (fcc) crystal structure, was produced by arc melting and drop casting. The drop-cast ingots were homogenized, cold rolled and recrystallized to obtain single-phase microstructures with three different grain sizes in the range 4–160 μm. Quasi-static tensile tests at an engineering strain rate of 10?3 s?1 were then performed at temperatures between 77 and 1073 K. Yield strength, ultimate tensile strength and elongation to fracture all increased with decreasing temperature. During the initial stages of plasticity (up to ~2% strain), deformation occurs by planar dislocation glide on the normal fcc slip system, {1 1 1}〈1 1 0〉, at all the temperatures and grain sizes investigated. Undissociated 1/2〈1 1 0〉 dislocations were observed, as were numerous stacking faults, which imply the dissociation of several of these dislocations into 1/6〈1 1 2〉 Shockley partials. At later stages (~20% strain), nanoscale deformation twins were observed after interrupted tests at 77 K, but not in specimens tested at room temperature, where plasticity occurred exclusively by the aforementioned dislocations which organized into cells. Deformation twinning, by continually introducing new interfaces and decreasing the mean free path of dislocations during tensile testing (“dynamic Hall–Petch”), produces a high degree of work hardening and a significant increase in the ultimate tensile strength. This increased work hardening prevents the early onset of necking instability and is a reason for the enhanced ductility observed at 77 K. A second reason is that twinning can provide an additional deformation mode to accommodate plasticity. However, twinning cannot explain the increase in yield strength with decreasing temperature in our high-entropy alloy since it was not observed in the early stages of plastic deformation. Since strong temperature dependencies of yield strength are also seen in binary fcc solid solution alloys, it may be an inherent solute effect, which needs further study.  相似文献   

17.
This paper studies the failure behaviour of ARALL (Aramid Aluminum Laminate) under tensile loading by means of acoustic emission (AE), optical metallography (OM) and scanning electronic microscope (SEM), and analyzes the fracture appearance of ARALL and its fracture characteristics. The damage models of ARALL are concluded in this paper. The results show that ARALL will yield under tensile loading, and its strength will decrease as the content of resin increases. During fracture process, AE amplitude distribution curves show that there are three obvious peaks, which respectively correspond to separation of the interface between fibers and resin, local delamination damage and fracture of a small quantity of fibers, and delamination damage of large area and final fracture of a large numbers of fibers. Dynamic damage and fracture process of ARALL can be detected by AE.  相似文献   

18.
19.
Stress intensity factors of thin AZ31B magnesium alloy sheet under biaxial tension loading were analyzed by modified Dugdale model.K-values with crack angle of 90°obviously show that there is no influence of the loading condition in Mode-I.In the 45°case,K Ⅰ values are obtained within 10%errors when they are calculated by modified Dugdale model under biaxial loading.It is concluded that the modified Dugdale model is one of effective ways to evaluate stress intensity factor of AZ31 magnesium alloy sheet appropriately.  相似文献   

20.
FeCrAl合金优良的高温抗氧化性能使其成为反应堆燃料包壳的候选替代材料之一,然而Cr和Al的存在会对其力学性能产生负面影响,对反应堆的安全运行造成潜在风险。为了分析FeCrAl合金体系在微观尺度的变形机制,采用分子动力学方法研究了温度和应变速率两个重要影响因素下FeCrAl单晶的力学性能,对应力应变、缺陷分布、位错密度的变化及变形机制进行了讨论,分析了溶质原子对模拟结果的影响。结果表明,温度升高导致原子热运动加剧,促进了缺陷的形成和生长,降低了原子间相互作用,导致弹性模量和抗拉强度随温度的升高而降低。应变速率的升高导致弹性模量和抗拉强度降低,低应变速率的塑性变形机制主要孪生变形,中等应变速率下为位错滑移,高应变速率下为原子排列无序化的变形机制。温度和应变速率对α-Fe和FeCrAl具有相同的作用趋势,但与α-Fe相比,FeCrAl中的Cr和Al会产生明显的晶格畸变和应力集中,促进了缺陷和位错的形成和运动,降低材料的屈服强度和抗拉强度。基于计算结果,对FeCrAl单晶体系建立了基于F-B方程的本构模型,拓展了计算结果的应用范围。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号