首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electromagnetic acoustic transducers (EMATs) can emit and receive ultrasound on a conducting sample without contact, but are usually kept within 3 mm lift-off from the sample surface, to achieve a sufficient signal-to-noise ratio (SNR). There are scenarios under which EMATs must scan a sample at high speed, with the EMAT-sample separation varying by more than the standard lift-off range, such as for detection of gauge corner cracks in rail. A new EMAT has been designed that allows the low weight and flexible EMAT coil to skim over the sample surface, while the heavier and bulkier magnet behind the coil has a lift-off that can vary over 10 mm whilst still achieving a reasonable SNR. In experiments conducted with the EMATs mounted on a train, scanning a rail, they were demonstrated as being sufficiently robust, with an SNR sufficient for defect detection.  相似文献   

2.
Preliminary results obtained at a range of temperatures using a pulsed electromagnet Electromagnetic Acoustic Transducer (EMAT) show that this alternative approach overcomes the limitation of permanent magnets due to their relatively low maximum operating temperature. Operation on low carbon mild steel sample at temperatures up to 250 °C has been demonstrated. Furthermore, this transducer has shown a significant enhancement in the generated shear wave and better lift-off performance when compared with permanent magnet EMATs at room temperature on mild steel.  相似文献   

3.
The structural evolution of Ni/Al multilayer thin films with temperature was studied by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) and X-ray diffraction (XRD). Thin films with nanometric Ni and Al alternated layers were deposited by d.c. magnetron sputtering. In our experiments, we used a bilayer thickness of 5, 14 and 30 nm and a total film thickness ranging from 2 to 2.7 μm. The XRD patterns of the as-deposited sample revealed only peaks of Al and Ni. DSC experiments were performed on freestanding films, from room temperature to 700 °C at 10 and 40 °C/min. Two exothermic reactions were detected in the DSC curves of the film with a 30 nm bilayer thickness, with peak temperatures at 230 and 330 °C. The films with 5 and 14 nm bilayer thickness presented only one exothermic peak at 190 and 250 °C, respectively. To identify the intermetallic reaction products, DSC samples were examined by XRD. NiAl formation corresponds to one single DSC peak, for films with short bilayer thicknesses (5 and 14 nm). The films with 30 nm bilayer thickness were heated at 250 °C (T = T1st peak), 300 °C (T1st peak < T < T2nd peak), 450 °C (T > T2nd peak) and 700 °C. The XRD results indicated that at 250 °C the phase formed was NiAl3, whilst NiAl3 and Ni2Al3 phases were identified at 300 °C. For the 450 °C sample, only NiAl was detected. Further heating to 700 °C promotes the growth of NiAl grains.  相似文献   

4.
Understanding the microstructure of W–Cu nanocomposite powder is essential for elucidating its sintering mechanism. In this study, the effect of milling time on the structural characteristics and densification behavior of W-Cu composite powders synthesized from WO3-CuO powder mixtures was investigated. The mixture of WO3 and CuO powders was ball-milled in a bead mill for 1 h and 10 h followed by reduction by heat-treating the mixture at 800 °C in H2 atmosphere with a heating rate of 2 °C/min to produce W-Cu composite powder. The microstructure analysis of the reduced powder obtained by milling for 1 h revealed the formation of W–Cu powder consisting of W nanoparticle-attached Cu microparticles. However, Cu-coated W nanocomposite powder consisting of W nanoparticles coated with a Cu layer was formed when the mixture was milled for 10 h. Cu-coated W nanopowder exhibited an excellent sinterability not only in the solid-phase sintering stage (SPS) but also in the liquid-phase sintering stage (LPS). A high relative sintered density of 96.0% was obtained at 1050 °C with a full densification occurring on sintering the sample at 1100 °C. The 1 h-milled W-Cu powder exhibited a high sinterability only in the LPS stage to achieve a nearly full densification at 1200 °C.  相似文献   

5.
7000 series aluminium alloys have greater strength than conventional aluminium alloys used in the automotive industry, but little has been reported on their formability. In this paper the strength and formability of age-hardenable AW-7020 alloy sheet in the T6 temper condition was investigated at temperatures between 150 and 250 °C by warm tensile, Swift-cupping and cross-die deep-drawing tests. Differential scanning calorimetry (DSC) investigations were carried out to study the precipitation state of AW-7020 sheet in as-received, warm cross-die deep-drawn and post-paint-baked conditions. Formability was found to improve at temperatures above 150 °C and was sensitive to temperature and strain rate. There was also an onset of dynamic recovery from 150 °C. DSC results showed the presence of η′ precipitates in T6 temper and that these coarsen during the warm cross-die deep-drawing and paint baking processes with ∼30% drop in ultimate tensile and yield strengths. Dynamic recovery and coarsening of η′ precipitates were found to contribute to the increase in formability at elevated temperatures.  相似文献   

6.
Plasma immersion ion implantation (PIII) was used to implant nitrogen into Al at a temperature in the range of 320–520 °C. AlN phase was observed for temperatures above 450 °C, whereas no AIN detected by XRD diagnosis at temperatures below 380 °C. It was also observed that there was no effective increase in hardness of the material, but some wear resistance due to formation of AlN.  相似文献   

7.
《Intermetallics》2006,14(10-11):1136-1142
Recently the target temperature of components manufactured from gamma-TiAl alloys like turbine blades, turbocharger rotors or automotive valves has been increased to 900 °C. However, there is an insufficient oxidation resistance above 750 °C. One method used to improve the gamma-TiAl oxidation behaviour is the so-called fluorine microalloying effect. After application of fluorine to the TiAl surface by ion implantation or treatment with diluted HF and oxidation at 900 °C in air a dense alumina layer is formed. The aim of this work was firstly to study the short time development of the fluorine concentration during heating up to 400–1000 °C (1 h/air) in steps of 100 °C. Using ion beam analysis the depth profiles of F, Al, Ti and O were obtained simultaneously and non-destructive. A distinct loss of fluorine was found between 400 °C and 500 °C. At temperatures above 800 °C an alumina layer was formed with fluorine maximum located at the metal/oxide interface. Secondly the long time behaviour during oxidation of up to 500 h/900 °C/air was investigated showing a slow fluorine decrease. The alumina layer acts as a diffusion barrier for fluorine, whereas fluorine diffuses into the metal. The diffusion coefficient was calculated. The results fit into the theoretical model assuming a selective transport of gaseous aluminium fluorides at the metal/oxide interface.  相似文献   

8.
A continuous and compact iridium (Ir) coating with a thickness of ~ 100 μm was electrodeposited on a rhenium (Re) rod in molten salt at 580 °C for 4 h. The oxidation resistance and failure mechanism of the Ir coated Re (Ir/Re) material were investigated by resistance heating method at 2000 °C in air till the Ir coating failed. The results showed that the lifetime of the Ir/Re rod oxidized at 2000 °C in air was 183 min. After high-temperature oxidation, except for the failure position, the Ir coating in most of the heated regions kept dense and exhibited excellent adhesion on the substrate, with smooth surface and large grain size. The preferred orientation of the Ir coating changed from < 220 > to < 111 > after oxidation test. From the end to the center of the as-oxidized Ir/Re sample, the Ir coating became thinner, and the diffusion layer between Ir and Re got thicker. Meanwhile, the preferential oxidation of grain boundaries of Ir coating was more and more severe. It was found that the lifetime of the Ir/Re material in high-temperature oxidizing environment is closely related to the consumption rates of Ir coating by both the direct oxidation of Ir and the diffusion of Re into Ir coating. Based on the diffusion and oxidation kinetics of Re and Ir, the lifetime of the Ir/Re sample in the present study was calculated to be 242 min. The difference between the calculated and real lifetimes can be attributed to the ignored fact that Re diffuses rapidly along the grain boundaries of Ir coating in the calculation.  相似文献   

9.
《Acta Materialia》2008,56(16):4369-4377
Upon aging at 300–450 °C, nanosize, coherent Al3(Sc1−xTix) precipitates are formed in pure aluminum micro-alloyed with 0.06 at.% Sc and 0.06 at.% Ti. The outstanding coarsening resistance of these precipitates at these elevated temperatures (61–77% of the melting temperature of aluminum) is explained by the significantly smaller diffusivity of Ti in Al when compared to that of Sc in Al. Furthermore, this coarse-grained alloy exhibits good compressive creep resistance for a castable, heat-treatable aluminum alloy: the creep threshold stress varies from 17 MPa at 300 °C to 7 MPa at 425 °C, as expected if the climb bypass by dislocations of the mismatching precipitates is hindered by their elastic stress fields.  相似文献   

10.
The changes in the microstructure and surface morphology, caused by heat treatment, of binary AlSn model alloys, containing 30–1000 ppm tin were investigated with the purpose of understanding activation of aluminium by trace element tin in aqueous media. Specimens prepared by casting and cold-rolling in the laboratory were annealed for 1 h at 300 or 600 °C and quenched in water, and then characterised by various surface-analytical techniques. In the as-rolled condition, tin was in solid solution with aluminium. The microstructure and surface morphology in this condition were not different from those of pure aluminium. Significant segregation of liquid Sn occurred by annealing at 300 °C to the metal surface, caused by the combined effect of limited solubility and high mobility of Sn in Al at this temperature. Segregated Sn caused oxidation of aluminium during water quenching following heat treatment. The resulting oxide formation increased with increasing Sn content of the alloy from localised cases to extensive coverage by a 1.3 μm thick scale. Most of the Sn was homogenised in solid solution with Al by annealing at 600 °C for all Sn concentrations. The alloy containing 1000 ppm Sn still formed a thick oxide as a result of quenching in water after heat treatment, caused by enrichment of Sn at the metal–oxide interface by dealloying of Al.  相似文献   

11.
The effect of small amounts of gallium on liquid metal embrittlement of model binary AlGa alloys containing 50–1000 ppm2 Ga is studied. Ga segregation did not occur by annealing in the temperature range 300–600 °C because of the high solid solution solubility of Ga in aluminium. Alkaline etching caused significant enrichment of Ga at the surface by dealloying. Diffusion of Ga from the surface into the grain boundaries caused liquid metal embrittlement of samples containing at least 250 ppm Ga. Segregated Ga dissolved back into aluminium by annealing for 1 h at 600 °C after etching, eliminating the grain boundary embrittlement.  相似文献   

12.
This paper reports the friction and wear response of WC–10%Co(Cr/V) cemented carbide with different surface finishes, attained by grinding (G) and wire-EDM, respectively, during sliding experiments at 400 °C. For comparison, tests under the same conditions were carried out at 25 °C. The wear experiments were performed under a normal force of 14 N, which produced a Hertzian maximum pressure of 3.10 GPa, and a sliding speed of 0.3 m/s against WC–6%Co(Cr/V) balls of 6 mm diameter. At 25 °C the average values of the friction coefficients were 0.36 ± 0.04 and 0.39 ± 0.06 for the ground and wire-EDM surface finishes, respectively. The mechanical behavior of both systems at 25 °C was assessed by carrying out analytical calculations of the stress field created by a circular sliding contact under a spherical indenter, where the residual stresses were considered. The theoretical results are in agreement with the experimental data, indicating that the wire-EDM sample has a specific wear rate, which is approximately 3.1 times greater than that corresponding to the G sample at 25 °C. At 400 °C, an increase in the friction coefficients takes place up to values of 0.75 ± 0.1 and 0.71 ± 0.8, for the ground and wire-EDM surface finishes, respectively. The increase was associated to an adhesive mechanism, which is more pronounced for the G sample. However, for the wire-EDM sample this increase was more linked to a marked abrasive mechanism. The wear rates for both samples at 400 °C are similar to those obtained at 25 °C, which indicates that apparently the test temperature does not have an important effect on the wear rate. However, it is known that temperature influences considerably the residual stress nature. Therefore, these results were explained by taking into account the wear mechanisms between the tribopairs in view of the mechanical characteristics and the morphological features obtained from SEM coupled with EDS analysis.  相似文献   

13.
Electromagnetic Acoustic Transducers (EMATs) are a useful ultrasonic tool for non-destructive evaluation in harsh environments due to their non-contact capabilities, and their ability to operate through certain coatings. This work presents a new Rayleigh wave EMAT transducer design, employing geometric focusing to improve the signal strength and detection precision of surface breaking defects. The design is robust and versatile, and can be used at frequencies centered around 1 MHz. Two coils are used in transmission mode, which allows the usage of frequency-based measurement of the defect depth. Using a 2 MHz driving signal, a focused beam spot with a width of 1.3±0.25 mm and a focal depth of 3.7±0.25 mm is measured, allowing for defect length measurements with an accuracy of±0.4 mm and detection of defects as small as 0.5 mm depth and 1 mm length. A set of four coils held under one magnet is used to find defects at orientations offset from normal to the ultrasound beam propagation direction. This EMAT has a range which allows detection of defects which propagate at angles from 16° to 170° relative to the propagation direction over the range of 0–180°, and the setup has the potential to be able to detect defects propagating at all angles relative to the wave propagation direction if two coils are alternately employed as generation coils.  相似文献   

14.
Nanocrystalline TiO2 thin films were deposited on a ITO coated glass substrate by sol–gel dip coating technique, the layers undergo a heat treatment at temperatures varying from 300 to 450 °C. The structural, morphological and optical characterizations of the as deposited and annealed films were carried out using X-ray diffraction (XRD), Raman spectroscopy, Atomic Force Microscopy (AFM), visible, (Fourier-Transform) infrared and ultraviolet spectroscopy, Fluorescence and spectroscopic ellipsometry. The results indicate that an anatase phase structure TiO2 thin film with nanocrystallite size of about 15 nm can be obtained at the heat treatment temperature of 350 °C or above, that is to say, at the heat treatment temperature below 300 °C, the thin films grow in amorphous phase; while the heat treatment temperature is increased up to 400 °C or above, the thin film develops a crystalline phase corresponding to the titanium oxide anatase phase. We have accurately determined the layer thickness, refractive index and extinction coefficient of the TiO2 thin films by the ellipsometric analysis. The optical gap decreases from 3.9 to 3.5 eV when the annealing temperature increases. Photocatalytic activity of the TiO2 films was studied by monitoring the degradation of aqueous methylene blue under UV light irradiation and was observed that films annealed above 350 °C had good photocatalytic activity which is explained as due to the structural and morphological properties of the films.  相似文献   

15.
The material removal of the C- and Si-face of 4H-SiC using a 13.56 MHz RF excited plasma jet source at atmospheric pressure using helium as feed gas and CF4 as reactive gas has been investigated. Additionally O2 is provided together with the peripherally injected N2 shielding gas and it is shown that a decrease of the etching rate with an increase of the O2 gas flow occurs.Furthermore, etching experiments under sample heating have been carried out for different [CF4]/[O2] mixtures to obtain the activation energy of fluorine and oxygen with the surface. A minimum in the etching rate at a temperature of approximately 150 °C has been found. Therefore XPS and SEM analyses have been carried out for surfaces etched at sample temperatures of 25 °C, 150 °C and 400 °C showing an elevated fraction of silicon oxides and film thickness at 150 °C.  相似文献   

16.
《Acta Materialia》2007,55(9):3089-3102
The deformation mechanisms under tensile loading in a 45 vol.% γ′ polycrystalline nickel-base superalloy have been studied using neutron diffraction at 20 °C, 400 °C, 500 °C, 650 °C and 750 °C with the results interpreted via (self-consistent) polycrystal deformation modelling. The data demonstrate that such experiments are suited to detecting changes of the γ′ slip mode from {1 1 1} to {1 0 0} with increasing temperature. Between room temperature and 500 °C there is load transfer from γ′ to γ, indicating that γ′ is the softer phase. At higher temperatures, opposite load transfer is observed indicating that the γ matrix is softer. At 400 °C and 500 °C, an instantaneous yielding increment of about 2% was observed, after an initial strain of 1.5%. This instantaneous straining coincided with zero lattice misfit between γ and γ′ in the axial direction. Predicted and experimental results of the elastic strain response of the two phases and different grain families showed good agreement at elevated temperatures, while only qualitative agreement was found at 20 °C.  相似文献   

17.
This study focuses on the implementation of different aluminum oxide coatings processed by metal-organic chemical vapor deposition from aluminum tri-isopropoxide on commercial Ti6Al4V titanium alloy to improve its high temperature corrosion resistance. Films grown at 350 °C and at 480 °C are amorphous and correspond to formulas AlOOH, and Al2O3, respectively. Those deposited at 700 °C are composed of γ-Al2O3 nanocrystals dispersed in a matrix of amorphous alumina. Their mechanical properties and adhesion to the substrates were investigated by indentation, scratch and micro tensile tests. Hardness and rigidity of the films increase with increasing deposition temperature. The hardness of the coatings prepared at 350 °C and 480 °C is 5.8 ± 0.7 GPa and 10.8 ± 0.8 GPa respectively. Their Young's modulus is 92 ± 8 GPa (350 °C) and 155 ± 6 GPa (480 °C). Scratch tests cause adhesive failures of the films grown at 350 °C and 480 °C whereas cohesive failure is observed for the nanocrystalline one, grown at 700 °C. Micro tensile tests show a more progressive cracking of the latter films than on the amorphous ones. The films allow maintaining good mechanical properties after corrosion with NaCl deposit during 100 h at 450 °C. After corrosion test only the film deposited at 700 °C yields an elongation at break comparable to that of the as processed samples without corrosion. The as established processing–structure–properties relation paves the way to engineer MOCVD aluminum oxide complex coatings which meet the specifications of the high temperature corrosion protection of titanium alloys with regard to the targeted applications.  相似文献   

18.
Oxidation protective SiC nanowire-toughened CrSi2–SiC–Si coating was prepared on SiC-coated carbon/carbon composites by chemical vapor deposition and pack cementation. SiC nanowires in the coating suppressed the cracking of the coating via various toughening mechanisms including nanowire pullout, microcrack bridging by nanowire and microcrack deflection, resulting in a good oxidation inhibition for the coated samples. The results showed that the maximal weight loss of the coated samples was only 2.55% in thermogravimetric analysis from room temperature to 1500 °C, and the weight loss of the coated samples was only 1.24% after isothermal oxidation at 1500 °C for 316 h.  相似文献   

19.
《Scripta materialia》2004,50(4):511-516
It was shown that an Al–5.7%Mg–0.32%Sc–0.3%Mn alloy subjected to severe plastic deformation through equal-channel angular extrusion exhibits superior superplastic properties in the temperature range of 250–500 °C at strain rates ranging from 1.4 × 10−5 to 1.4 s−1 with a maximum elongation-to-failure of 2000% recorded at 450 °C and an initial strain rate of 5.6 × 10−2 s−1.  相似文献   

20.
In this work, 60 wt.% NiCrSiB–40 wt.% Al2O3 composite coating was produced on AISI 304 substrate material using the atmospheric plasma spraying technique. The coating surface has been characterised using a scanning electron microscope (SEM), optical microscope and X-ray diffractometer (XRD). The microhardness, porosity, density and surface roughness of the coating were measured. The adhesion strength of the coating was measured using pull off adhesion tester. The erosion behaviour of plasma sprayed coating was studied at 450 °C using hot air jet erosion testing machine. The erosion rate of coated and uncoated samples was evaluated at 30° and 90° erodent impact angles. The SEM images of the eroded samples were taken to analyse the erosion mechanism. The test results reveal that the coating protects the substrate at both 30° and 90° impact angles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号