首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高熵合金是近十几年来出现的一类新型金属材料,通常由5种或5种以上的元素以等原子比或近等原子比构成,形成以固溶体相为主的组织结构。高熵合金概念的提出,突破了传统合金的设计理念,极大拓展了合金设计的空间。由于具有大晶格畸变、高混合熵、原子缓慢扩散和"鸡尾酒"效应等多重效应,高熵合金显示出高强度、高韧性、高硬度、异常优异的低温韧性、优异的耐腐蚀和抗辐照等独特性能。通过对高熵合金目前研究现状的系统总结,探讨了高熵合金作为一种新型结构材料在核能和石油工业等多个领域极端服役条件下的应用前景,着重分析了高熵合金在钻杆接头耐磨带、抗腐蚀套管和高性能隔水管等油气开发关键构件应用的可行性。  相似文献   

2.
目前以一种或两种金属元素为主元的传统轻质合金在工业应用上有诸多局限性,如铝合金室温强度低、镁合金室温塑性和耐腐蚀性差且不易加工等。2004年叶均蔚首次正式提出高熵合金概念。高熵合金概念的提出为轻质合金的发展提供了新方向。区别于传统轻质合金,轻质高熵合金具有多种主元元素且混合熵较高,往往倾向于生成简单固溶体相。且轻质高熵合金表现出四大显著效应,即热力学上的高熵效应、动力学上的缓慢扩散效应、结构上的晶格畸变效应及性能上的"鸡尾酒"效应。独特的晶体结构和特性,使得轻质高熵合金具有传统轻质合金无法比拟的优点,如高强度、高硬度、优良的高温抗氧化性和耐腐蚀性能等。综述了轻质高熵合金的研究现状,阐述了轻质高熵合金的组元设计、制备方法、微观结构及合金性能,分析了轻质高熵合金现存的问题,并对轻质高熵合金未来的发展趋势进行了展望。  相似文献   

3.
Materials with low stacking fault energies have been long sought for their many desirable mechanical attributes. Although there have been many successful reports of low stacking fault alloys (for example Cu-based and Mg-based), many have lacked sufficient strength to be relevant for structural applications. The recent discovery and development of multicomponent equiatomic alloys (or high-entropy alloys) that form as simple solid solutions on ideal lattices has opened the door to investigate changes in stacking fault energy in materials that naturally exhibit high mechanical strength. We report in this article our efforts to determine the stacking fault energies of two- to five-component alloys. A range of methods that include ball milling, arc melting, and casting, is used to synthesize the alloys. The resulting structure of the alloys is determined from x-ray diffraction measurements. First-principles electronic structure calculations are employed to determine elastic constants, lattice parameters, and Poisson’s ratios for the same alloys. These values are then used in conjunction with x-ray diffraction measurements to quantify stacking fault energies as a function of the number of components in the equiatomic alloys. We show that the stacking fault energies decrease with the number of components. Nonequiatomic alloys are also explored as a means to further reduce stacking fault energy. We show that this strategy leads to a means to further reduce the stacking fault energy in this class of alloys.  相似文献   

4.
采用真空电弧熔炼的方法制备了CrxMoNbTiZr系高熵合金(x=0, 0.5, 1, 1.5)。利用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)、显微硬度计以及电化学工作站研究了Cr含量对该高熵合金结构、组织、硬度和耐蚀性能的影响。结果表明,Cr的添加使合金由单相BCC结构转变为富Zr相与富Mo-Nb相的双相BCC结构,随着Cr含量增加,在富Zr相中还有富Cr的Laves相析出;Cr1.5MoNbTiZr合金具有最高硬度765.53 HV,这是由于第二相析出强化、固溶强化与高熵合金晶格畸变的共同作用;Cr的加入增加了CrxMoNbTiZr系高熵合金在质量分数为3.5%NaCl溶液中发生腐蚀倾向,但降低了该系高熵合金的腐蚀速率,同时发现Cr的添加存在一个临界值来保证合金的抗点蚀能力,超过这个临界值合金就会更容易发生点蚀现象。  相似文献   

5.
The equiatomic high-entropy alloy FeNiCoCrMn is known to crystallize as a single phase with the face-centered cubic (FCC) crystal structure. To better understand this quinary solid solution alloy, we investigate various binary, ternary and quaternary alloys made from its constituent elements. Our goals are twofold: (i) to investigate which of these lower order systems also form solid solution alloys consisting of a single FCC phase, and (ii) to characterize their phase stability and recovery, recrystallization, and grain growth behaviors. X-ray diffraction (XRD) and scanning electron microscopy with backscattered electron images showed that three of the five possible quaternaries (FeNiCoCr, FeNiCoMn and NiCoCrMn), five of the ten possible ternaries (FeNiCo, FeNiCr, FeNiMn, NiCoCr, and NiCoMn), and two of the ten possible binaries (FeNi and NiCo) were single-phase FCC solid solutions in the cast and homogenized condition, whereas the others either had different crystal structures or were multi-phase. The single-phase FCC quaternary, FeNiCoCr, along with its equiatomic ternary and binary subsidiaries, were selected for further investigations of phase stability and the thermomechanical processing needed to obtain equiaxed grain structures. Only four of these subsidiary alloys—two binaries (FeNi and NiCo) and two ternaries (FeNiCo and NiCoCr)—were found to be single-phase FCC after rolling at room temperature followed by annealing for 1 h at temperatures of 300–1100 °C. Pure Ni, which is FCC and one of the constituents of the quinary high-entropy alloy (FeNiCoCrMn), was also investigated for comparison with the higher order alloys. Among the materials investigated after thermomechanical processing (FeNiCoCr, FeNiCo, NiCoCr, FeNi, NiCo, and Ni), FeNiCo and Ni showed abnormal grain growth at relatively low annealing temperatures, while the other four showed normal grain growth behavior. The grain growth exponents for all five of the equiatomic alloys were found to be ∼0.25 (compared to ∼0.5 for unalloyed Ni), suggesting that solute drag may control grain growth in the alloys. For all five alloys, as well as for pure Ni, microhardness increases as the grain size decreases in a Hall-Petch type way. The ternary alloy NiCoCr was the hardest of the alloys investigated in this study, even when compared to the quaternary FeNiCoCr alloy. This suggests that solute hardening in equiatomic alloys depends not just on the number of alloying elements but also their type.  相似文献   

6.
根据高熵合金的设计理念制备CuCrFeMnTiAlx(x=0,0.5,1.0,1.5)合金,研究Al含量对该合金系组织结构、硬度及摩擦磨损行为的影响。结果表明:该铸态高熵合金具有简单结构,随Al含量增加,结构由密排六方转变为面心立方;合金的组织为典型的枝晶组织,枝晶间Cu富集的现象明显;合金硬度随着Al含量的增加而升高,其中Al-1.5合金的硬度最高,可以达到7.19GPa;Al-0.5合金在摩擦过程中表面产生氧化区,降低了摩擦系数,因此Al-0.5合金的耐磨性最佳。  相似文献   

7.
The exceptional corrosion resistance and mechanical properties of high-entropy metallic glasses(HE-MGs) are highly desirable for diverse critical applications.However,a long-standing problem of these alloys is that their alloy design approaches are based on limited equiatomic or near-equiatomic ratios.In this study,a novel senary alloy(non-equiatomic Fe_3 Cr_2 Al_2 CuNi_4 Si_5) with amorphous structure was prepared.This alloy exhibited exceptional corrosion resistance and Vickers hardness as high as~1 150 Hv at room temperature.The processing route involved amorphous powder molding via a mechanical alloying and ultrahigh pressure consolidation technique,resulting in an optimal microstructure of amorphous structure with nanoparticles uniformly distributed in the matrix alloy.This approach can effectively inhibit the crystallization of amorphous structure,thus providing a general pathway for manufacturing next-generation non-equiatomic HE-MGs with both exceptional corrosion resistance and strength.  相似文献   

8.
High entropy alloys (HEAs) or Multi-principal element alloys (MEAs) are a relatively new class of alloys. These alloys are defined as having at least five major alloying elements in atomic percent from 5% to 35%. There are hundreds of thousands of equiatomic compositions possible and only a fraction have been explored. This project examines diffusion multiples as a method to accelerate alloy development in these systems. Co-Cr-Fe-Mn-Ni quinary diffusion multiples were successfully created. Using these multiples, a quinary region of disordered of FCC was formed and examined using EDS and nanoindentation methods. From these techniques, maps of common HEA parameters (Ω, δ, ΔSmix, ΔHmix and Δχ) proposed in literature could be calculated and directly compared to observed phase stability. Similarly, hardness was examined as function of compositional complexity and atomic mismatch in the quinary disordered region in order to directly test the severe lattice distortion hypothesis. It was found that proposed HEA parameters were ineffective at single phase stability limits in the Co-Cr-Fe-Mn-Ni system. It was also observed that hardness did not correlate well to the maximum compositional complexity or to the maximum in atomic mismatch. This indicates the severe lattice distortion hypothesis is not the primary contributor to strengthening in the Co-Cr-Fe-Mn-Ni HEA system.  相似文献   

9.
F. Otto  Y. Yang  H. Bei  E.P. George 《Acta Materialia》2013,61(7):2628-2638
High configurational entropies have been hypothesized to stabilize solid solutions in equiatomic, multi-element alloys which have attracted much attention recently as “high-entropy” alloys with potentially interesting properties. To evaluate the usefulness of configurational entropy as a predictor of single-phase (solid solution) stability, we prepared five new equiatomic, quinary alloys by replacing individual elements one at a time in a CoCrFeMnNi alloy that was previously shown to be single-phase [1]. An implicit assumption here is that, if any one element is replaced by another, while keeping the total number of elements constant, the configurational entropy of the alloy is unchanged; therefore, the new alloys should also be single-phase. Additionally, the substitute elements that we chose, Ti for Co, Mo or V for Cr, V for Fe, and Cu for Ni, had the same room temperature crystal structure and comparable size/electronegativity as the elements being replaced to maximize solid solubility consistent with the Hume–Rothery rules. For comparison, the base CoCrFeMnNi alloy was also prepared. After three-day anneals at elevated temperatures, multiple phases were observed in all but the base CoCrFeMnNi alloy, suggesting that, by itself, configurational entropy is generally not able to override the competing driving forces that also govern phase stability. Thermodynamic analyses were carried out for each of the constituent binaries in the investigated alloys (Co–Cr, Fe–Ni, Mo–Mn, etc.). Our experimental results combined with the thermodynamic analyses suggest that, in general, enthalpy and non-configurational entropy have greater influences on phase stability in equiatomic, multi-component alloys. Only when the alloy microstructure is a single-phase, approximately ideal solid solution does the contribution of configurational entropy to the total Gibbs free energy become dominant. Thus, high configurational entropy provides a way to rationalize, after the fact, why a solid solution forms (if it forms), but it is not a useful a priori predictor of which of the so-called high-entropy alloys will form thermodynamically stable single-phase solid solutions.  相似文献   

10.
Three novel NiTiFeAlCu high-entropy alloys, which consist of nano-precipitates with face-centered cubic structure and matrix with body-centered cubic structure, were fabricated to investigate microstructures and mechanical properties. With the increase in Ni and Ti contents, the strength of NiTiFeAlCu alloy is enhanced, while the plasticity of NiTiFeAlCu alloy is lowered. Plenty of dislocations can be observed in the Ni32Ti32Fe12Al12Cu12 high-entropy alloy. The size of nano-precipitates decreases with the increase in Ni and Ti contents, while lattice distortion becomes more and more severe with the increase in Ni and Ti contents. The existence of nano-precipitates, dislocations and lattice distortion is responsible for the increase in the strength of NiTiFeAlCu alloy, but it has an adverse influence on the plasticity of NiTiFeAlCu alloy. Ni20Ti20Fe20Al20Cu20 alloy exhibits the substantial ability of plastic deformation and a characteristic of steady flow at 850 and 1000 °C. This phenomenon is attributed to a competition between the increase in the dislocation density induced by plastic strain and the decrease in the dislocation density due to the dynamic recrystallization.  相似文献   

11.
High-entropy alloys have attracted broad research interests due to their unique and intriguing mechanical properties. As a category of high-entropy alloys, eutectic high-entropy alloys combine the advantages of eutectic and high-entropy alloys, with excellent mechanical properties and casting properties. Some eutectic high-entropy alloys have been developed and shown exciting properties. In this paper, based on the physical metallurgy of eutectic high-entropy alloy, medium-entropy alloy Fe_2NiCrNb_x was designed. The as-cast alloy is composed of FCC and Laves phases, Nb element promotes the formation of primary Laves phase, and the hardness of the alloy increases with the increase in Nb element. Among the four alloys, the eutectic chemical composition at eutectic point is Fe_2NiCrNb_(0.34); the alloy has a good strength and plastic balance. The ultimate comprehensive strength is 2267 MPa, and the fracture strain is 30.8%. The experiment data and analyses identified the eutectic points and the excellent mechanical behavior. Moreover, the expensive Co element was replaced by Fe element. This cheap medium-entropy alloy has promising prospect in the consideration of the cost performance ratio.  相似文献   

12.
A ternary equiatomic and nearly equiatomic alloy composed of the low-activation elements Fe, Cr, and V was designed for potential application as low-activation structural materials for the first wall of fusion reactors. The optimal composition of the multicomponent alloy was determined by minimizing the Gibbs free energy for solid-solution formation. The microstructure, phase stability, and mechanical properties of the equiatomic and optimized Fe-Cr-V alloys were studied. The equiatomic alloy consisted of a body-centered-cubic (BCC) solid-solution phase with a small amount of a face-centered-cubic (FCC) solid-solution phase, whereas the optimized alloy consisted of a single BCC solid-solution phase in the as-cast state. The crystal grains of both alloys were equiaxial. No phase transition was observed in the optimized alloy after homogenization; however, for the equiatomic alloy, the FCC solid-solution phase disappeared and surface relief was observed. The Vickers microhardness and yield strength of the Fe-Cr-V alloys increased after homogenization compared with those of the as-cast alloys.  相似文献   

13.
An analysis of simple structures of the solid-solution non-ordered high-entropy alloys (HEAs) with a bcc crystal lattice has allowed us to determine the effect of various parameters on their physicomechanical properties. It was found that, as the hardness increases, the size mismatch results in a decrease in the modulus of elasticity; however, the normalized hardness characteristic increases. It has been found that, when the enthalpy of mixing of the bcc high-entropy alloys shifts to negative values, its effect on the hardness and modulus of elasticity is nonmonotonic. A formula for calculating the modulus of elasticity of high-entropy alloys with a bcc structure has been suggested that is based on the alloy composition and role of the most refractory metallic component.  相似文献   

14.
Sluggish diffusion kinetics is an important contributor to the outstanding properties of high-entropy alloys. However, the diffusion kinetics in high-entropy alloys has never been probed directly. Here, the diffusion couple method was used to measure the diffusion parameters of Co, Cr, Fe, Mn and Ni in ideal-solution-like Co–Cr–Fe–Mn–Ni alloys. These parameters were compared with those in various conventional face-centered cubic metals. The results show that the diffusion coefficients in the Co–Cr–Fe–Mn–Ni alloys are indeed lower than those in the reference metals. Correspondingly, the activation energies in the high-entropy alloys are higher than those in the reference metals. Moreover, the trend of the normalized activation energy is positively related to the number of composing elements in the matrix. A quasi-chemical model is proposed to analyze the fluctuation of lattice potential energy in different matrices and to explain the observed trend in activation energies. Greater fluctuation of lattice potential energy produces more significant atomic traps and blocks, leading to higher activation energies, and thus accounts for the sluggish diffusion in high-entropy alloys.  相似文献   

15.
High-entropy alloys(HEAs) are a new class of materials with a potential engineering application,but how to obtain ultrafine or nano-sized crystal structures of HEAs has been a challenge.Here,we first presented an equiatomic CoCrFeNiCu HEA with excellent mechanical properties obtained via friction stir processing(FSP).After FSP,the Cu element segregation in the cast CoCrFeNiCu HEA was almost eliminated,and the cast coarse two-phase structure(several micrometers) was changed into an ultrafine-grained single-phase structure(150 nm) with a large fraction of high-angle grain boundaries and nanoscale deformation twins.This unique microstructure was mainly attributed to the severe plastic deformation during FSP,and the sluggish diffusion effect in dynamics and the lattice distortion effect in crystallography for HEAs.Furthermore,FSP largely improved the hardness and yield strength of the CoCrFeNiCu HEA with a value of 380 HV and more than 1150 MPa,respectively,which were 1.5 times higher than those of the base material.The great strengthening after FSP was mainly attributed to the significant grain refinement with large lattice distortion and nano-twins.This study provides a new method to largely refine the microstructure and improve the strength of cast CoCrFeNiCu HEAs.  相似文献   

16.
高熵合金以全新的设计理念及优异的性能引起广泛关注。难熔高熵合金(RHEAs)作为高熵合金的一类,主要由BCC晶体结构构成,具有高强高硬的特点,同时具有抗高温软化能力。本文针对难熔高熵合金制备方法、相结构、组织形貌、力学性能、应用领域等方面进行阐述,并对难熔高熵合金的发展方向进行了展望。  相似文献   

17.
张洁  程晓农  罗锐  刘明 《金属热处理》2020,45(6):173-177
采用微波烧结工艺制备B4C/FeCoNiCrAl与B4C/FeCoNiCrCu高熵合金基复合材料,研究了不同含量的B4C对FeCoNiCrAl、FeCoNiCrCu高熵合金组织结构和性能的影响。结果表明:B4C的添加一定程度上增加了基体合金的晶格畸变,合金微观组织由高熵合金基底区、碳化硼分解生成的硼化物区和碳化物区3部分构成。体心立方结构的FeCoNiCrAl高熵合金中硼化物为针状,面心立方结构FeCoNiCrCu高熵合金中硼化物组织为块状,这与合金体系中的原子尺寸差相关。B4C可显著提高合金的强度和硬度,塑性略有下降。4%B4C/FeCoNiCrAl合金复合材料具有最高的硬度和压缩强度值,分别为627.1 HV0.5和1836 MPa,但是塑性较差,压缩比仅为11%;而4%B4C/FeCoNiCrCu合金复合材料硬度与强度仅为249.3 HV0.5与1413 MPa,低于4%B4C/FeCoNiCrAl复合材料,但塑性较好,压缩比可达35%。  相似文献   

18.
使用双辉等离子体渗金属技术,通过调整渗金属温度在钨表面制备了WTaTiVCr高熵合金层,使用扫描电镜(SEM)、X射线能谱分析(EDS)、X射线衍射(XRD)、显微硬度计、往复摩擦试验和电化学腐蚀试验等对其组织成分、力学性能、耐磨性和耐蚀性等进行了分析。结果表明:当渗金属温度为1150 ℃、源极与阴极电压差为400 V时,可以得到含有扩散层、沉积层的复合渗金属层,其中扩散层区域各元素的原子分数为W0.38Ta0.14Ti0.2V0.2Cr0.08,相结构为单相BCC结构,符合高熵合金层的相结构与元素组成规律。同时其表面硬度由于受到固溶强化、晶格畸变等强化机理,与纯钨相比有很大的提升,达到1300 HV0.2以上。另外,该渗金属层的平均摩擦因数为0.447,磨损率为3.43×10-8 mm3/(N·mm),腐蚀速率为3.87 mg/(m2·h),具备一定的耐磨性和耐蚀性。综合以上结果,通过双辉技术在钨表面制备的WTaTiVCr高熵合金层可以有效提高W基体的力学性能和耐腐蚀性能。  相似文献   

19.
高熵合金是由多种元素以等摩尔或近等摩尔的比例混合形成的一种新型合金,较大的密度极大地限制了其应用。为了降低高熵合金的密度,出现了由Al、Li、Mg、Ti等轻质合金元素组成的轻质高熵合金,其在交通运输、航空航天领域潜在的应用前景引起了广泛关注。本文阐述了轻质高熵合金的研究现状,分析了轻质高熵合金的组元设计方法、相组成以及制备工艺,进而归纳总结了目前不同种类的轻质高熵合金的性能,包括高强度、高硬度、高温抗氧化性、耐蚀性能等。最后总结了轻质高熵合金目前存在的一些问题以及对轻质高熵合金未来的研究方向进行了展望。  相似文献   

20.
采用电弧熔炼制备了AlCrCuFeNbxNiTi (x = 0, 0.25, 0.5, 1.0)高熵合金,研究不同Nb含量对AlCrCuFeNbxNiTi高熵合金显微组织和力学性能的影响。研究表明:AlCrCuFeNbxNiTi (x = 0, 0.25, 0.5, 1.0)高熵合金物相主要包含有序FCC的L21相和Laves相,还有少量的BCC(A2)和FCC相;Nb元素的添加能促进Laves相的生成且对Cu元素的偏析具有一定的抑制效果;通过相判据参数计算找到了适合AlCrCuFeNbxNiTi高熵合金的相形成判据;添加适量的Nb元素能够改善AlCrCuFeNiTi六元高熵合金的力学性能;AlCrCuFeNb0.5NiTi 高熵合金具有较好的综合力学性能,抗压强度达到1587.4 MPa,硬度达到568.8 HV;Nb元素含量过高时会形成过多的Laves相使合金表现出过早脆化现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号