首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Building effective classifiers requires providing the modeling algorithms with information about the training data and modeling goals in order to create a model that makes proper tradeoffs. Machine learning algorithms allow for flexible specification of such meta-information through the design of the objective functions that they solve. However, such objective functions are hard for users to specify as they are a specific mathematical formulation of their intents. In this paper, we present an approach that allows users to generate objective functions for classification problems through an interactive visual interface. Our approach adopts a semantic interaction design in that user interactions over data elements in the visualization are translated into objective function terms. The generated objective functions are solved by a machine learning solver that provides candidate models, which can be inspected by the user, and used to suggest refinements to the specifications. We demonstrate a visual analytics system QUESTO for users to manipulate objective functions to define domain-specific constraints. Through a user study we show that QUESTO helps users create various objective functions that satisfy their goals.  相似文献   

2.
Efficient visibility computation is a prominent requirement when designing automated camera control techniques for dynamic 3D environments; computer games, interactive storytelling or 3D media applications all need to track 3D entities while ensuring their visibility and delivering a smooth cinematic experience. Addressing this problem requires to sample a large set of potential camera positions and estimate visibility for each of them, which in practice is intractable despite the efficiency of ray-casting techniques on recent platforms. In this work, we introduce a novel GPU-rendering technique to efficiently compute occlusions of tracked targets in Toric Space coordinates – a parametric space designed for cinematic camera control. We then rely on this occlusion evaluation to derive an anticipation map predicting occlusions for a continuous set of cameras over a user-defined time window. We finally design a camera motion strategy exploiting this anticipation map to minimize the occlusions of tracked entities over time. The key features of our approach are demonstrated through comparison with traditionally used ray-casting on benchmark scenes, and through an integration in multiple game-like 3D scenes with heavy, sparse and dense occluders.  相似文献   

3.
Machine learning (ML) models are nowadays used in complex applications in various domains, such as medicine, bioinformatics, and other sciences. Due to their black box nature, however, it may sometimes be hard to understand and trust the results they provide. This has increased the demand for reliable visualization tools related to enhancing trust in ML models, which has become a prominent topic of research in the visualization community over the past decades. To provide an overview and present the frontiers of current research on the topic, we present a State-of-the-Art Report (STAR) on enhancing trust in ML models with the use of interactive visualization. We define and describe the background of the topic, introduce a categorization for visualization techniques that aim to accomplish this goal, and discuss insights and opportunities for future research directions. Among our contributions is a categorization of trust against different facets of interactive ML, expanded and improved from previous research. Our results are investigated from different analytical perspectives: (a) providing a statistical overview, (b) summarizing key findings, (c) performing topic analyses, and (d) exploring the data sets used in the individual papers, all with the support of an interactive web-based survey browser. We intend this survey to be beneficial for visualization researchers whose interests involve making ML models more trustworthy, as well as researchers and practitioners from other disciplines in their search for effective visualization techniques suitable for solving their tasks with confidence and conveying meaning to their data.  相似文献   

4.
Recent studies have indicated that visually embellished charts such as infographics have the ability to engage viewers and positively affect memorability. Fueled by these findings, researchers have proposed a variety of infographic design tools. However, these tools do not cover the entire design space. In this work, we identify a subset of infographics that we call infomages. Infomages are casual visuals of data in which a data chart is embedded into a thematic image such that the content of the image reflects the subject and the designer's interpretation of the data. Creating an effective infomage, however, can require a fair amount of design expertise and is thus out of reach for most people. In order to also afford non-artists with the means to design convincing infomages, we first study the principled design of existing infomages and identify a set of key chart embedding techniques. Informed by these findings we build a design tool that links web-scale image search with a set of interactive image processing tools to empower novice users with the ability to design a wide variety of infomages. As the embedding process might introduce some amount of visual distortion of the data our tool also aids users to gauge the amount of this distortion, if any. We experimentally demonstrate the usability of our tool and conclude with a discussion of infomages and our design tool.  相似文献   

5.
Machine learning practitioners often compare the results of different classifiers to help select, diagnose and tune models. We present Boxer, a system to enable such comparison. Our system facilitates interactive exploration of the experimental results obtained by applying multiple classifiers to a common set of model inputs. The approach focuses on allowing the user to identify interesting subsets of training and testing instances and comparing performance of the classifiers on these subsets. The system couples standard visual designs with set algebra interactions and comparative elements. This allows the user to compose and coordinate views to specify subsets and assess classifier performance on them. The flexibility of these compositions allow the user to address a wide range of scenarios in developing and assessing classifiers. We demonstrate Boxer in use cases including model selection, tuning, fairness assessment, and data quality diagnosis.  相似文献   

6.
Mixed reality (MR) is a powerful interactive technology for new types of user experience. We present a semantic-based interactive MR framework that is beyond current geometry-based approaches, offering a step change in generating high-level context-aware interactions. Our key insight is that by building semantic understanding in MR, we can develop a system that not only greatly enhances user experience through object-specific behaviours, but also it paves the way for solving complex interaction design challenges. In this paper, our proposed framework generates semantic properties of the real-world environment through a dense scene reconstruction and deep image understanding scheme. We demonstrate our approach by developing a material-aware prototype system for context-aware physical interactions between the real and virtual objects. Quantitative and qualitative evaluation results show that the framework delivers accurate and consistent semantic information in an interactive MR environment, providing effective real-time semantic-level interactions.  相似文献   

7.
In this paper, we present an integrated visual analytics approach to support the parametrization and exploration of flow visualization based on the finite-time Lyapunov exponent. Such visualization of time-dependent flow faces various challenges, including the choice of appropriate advection times, temporal regions of interest, and spatial resolution. Our approach eases these challenges by providing the user with context by means of parametric aggregations, with support and guidance for a more directed exploration, and with a set of derived measures for better qualitative assessment. We demonstrate the utility of our approach with examples from computation fluid dynamics and time-dependent dynamical systems.  相似文献   

8.
Design problems in engineering typically involve a large solution space and several potentially conflicting criteria. Selecting a compromise solution is often supported by optimization algorithms that compute hundreds of Pareto-optimal solutions, thus informing a decision by the engineer. However, the complexity of evaluating and comparing alternatives increases with the number of criteria that need to be considered at the same time. We present a design study on Pareto front visualization to support engineers in applying their expertise and subjective preferences for selection of the most-preferred solution. We provide a characterization of data and tasks from the parametric design of electric motors. The requirements identified were the basis for our development of PAVED, an interactive parallel coordinates visualization for exploration of multi-criteria alternatives. We reflect on our user-centered design process that included iterative refinement with real data in close collaboration with a domain expert as well as a summative evaluation in the field. The results suggest a high usability of our visualization as part of a real-world engineering design workflow. Our lessons learned can serve as guidance to future visualization developers targeting multi-criteria optimization problems in engineering design or alternative domains.  相似文献   

9.
The ability to perceive patterns in parallel coordinates plots (PCPs) is heavily influenced by the ordering of the dimensions. While the community has proposed over 30 automatic ordering strategies, we still lack empirical guidance for choosing an appropriate strategy for a given task. In this paper, we first propose a classification of tasks and patterns and analyze which PCP reordering strategies help in detecting them. Based on our classification, we then conduct an empirical user study with 31 participants to evaluate reordering strategies for cluster identification tasks. We particularly measure time, identification quality, and the users’ confidence for two different strategies using both synthetic and real-world datasets. Our results show that, somewhat unexpectedly, participants tend to focus on dissimilar rather than similar dimension pairs when detecting clusters, and are more confident in their answers. This is especially true when increasing the amount of clutter in the data. As a result of these findings, we propose a new reordering strategy based on the dissimilarity of neighboring dimension pairs.  相似文献   

10.
3D animations are an effective method to learn about complex dynamic phenomena, such as mesoscale biological processes. The animators' goals are to convey a sense of the scene's overall complexity while, at the same time, visually guiding the user through a story of subsequent events embedded in the chaotic environment. Animators use a variety of visual emphasis techniques to guide the observers' attention through the story, such as highlighting, halos – or by manipulating motion parameters of the scene. In this paper, we investigate the effect of smoothing the motion of contextual scene elements to attract attention to focus elements of the story exhibiting high-frequency motion. We conducted a crowdsourced study with 108 participants observing short animations with two illustrative motion smoothing strategies: geometric smoothing through noise reduction of contextual motion trajectories and visual smoothing through motion blur of context items. We investigated the observers' ability to follow the story as well as the effect of the techniques on speed perception in a molecular scene. Our results show that moderate motion blur significantly improves users' ability to follow the story. Geometric motion smoothing is less effective but increases the visual appeal of the animation. However, both techniques also slow down the perceived speed of the animation. We discuss the implications of these results and derive design guidelines for animators of complex dynamic visualizations.  相似文献   

11.
Online aggregation provides estimates to the final result of a computation during the actual processing. The user can stop the computation as soon as the estimate is accurate enough, typically early in the execution. This allows for the interactive data exploration of the largest datasets. In this paper we introduce the first framework for parallel online aggregation in which the estimation virtually does not incur any overhead on top of the actual execution. We define a generic interface to express any estimation model that abstracts completely the execution details. We design a novel estimator specifically targeted at parallel online aggregation. When executed by the framework over a massive 8 TB TPC-H instance, the estimator provides accurate confidence bounds early in the execution even when the cardinality of the final result is seven orders of magnitude smaller than the dataset size and without incurring overhead.  相似文献   

12.
13.
We introduce an approach for converting pixel art into high-quality vector images. While much progress has been made on automatic conversion, there is an inherent ambiguity in pixel art, which can lead to a mismatch with the artist's original intent. Further, there is room for incorporating aesthetic preferences during the conversion. In consequence, this work introduces an interactive framework to enable users to guide the conversion process towards high-quality vector illustrations. A key idea of the method is to cast the conversion process into a spring-system optimization that can be influenced by the user. Hereby, it is possible to resolve various ambiguities that cannot be handled by an automatic algorithm.  相似文献   

14.
We present a novel approach for rendering volumetric data including the Doppler effect of light. Similar to the acoustic Doppler effect, which is caused by relative motion between a sound emitter and an observer, light waves also experience compression or expansion when emitter and observer exhibit relative motion. We account for this by employing spectral volume rendering in an emission–absorption model, with the volumetric matter moving according to an accompanying vector field, and emitting and attenuating light at wavelengths subject to the Doppler effect. By introducing a novel piecewise linearear representation of the involved light spectra, we achieve accurate volume rendering at interactive frame rates. We compare our technique to rendering with traditional point-based spectral representation, and demonstrate its utility using a simulation of galaxy formation.  相似文献   

15.
We analyze the joint efforts made by the geometry processing and the numerical analysis communities in the last decades to define and measure the concept of “mesh quality”. Researchers have been striving to determine how, and how much, the accuracy of a numerical simulation or a scientific computation (e.g., rendering, printing, modeling operations) depends on the particular mesh adopted to model the problem, and which geometrical features of the mesh most influence the result. The goal was to produce a mesh with good geometrical properties and the lowest possible number of elements, able to produce results in a target range of accuracy. We overview the most common quality indicators, measures, or metrics that are currently used to evaluate the goodness of a discretization and drive mesh generation or mesh coarsening/refinement processes. We analyze a number of local and global indicators, defined over two- and three-dimensional meshes with any type of elements, distinguishing between simplicial, quadrangular/hexahedral, and generic polytopal elements. We also discuss mesh optimization algorithms based on the above indicators and report common libraries for mesh analysis and quality-driven mesh optimization.  相似文献   

16.
While various optimization techniques have been used in existing thin client systems to reduce network traffic, the screen updates triggered by many user operations will still result in long interactive latencies in many contemporary network environments. Long interactive latencies have an unfavorable effect on users’ perception of graphical interfaces and visual contents. The long latencies arise when data spikes need to be transferred over a network while the available bandwidth is limited. These data spikes are composed of a large amount of screen update data produced in a very short time. In this paper, we propose a model to analyze the packet-level redundancy in screen update streams caused by repainting of graphical objects. Using this model we analyzed the data spikes in screen update streams. Based on the analysis result we designed a hybrid cache-compression scheme. This scheme caches the screen updates in data spikes on both server and client sides, and uses the cached data as history to better compress the recurrent screen updates in possible data spikes. We empirically studied the effectiveness of our cache scheme on some screen updates generated by one of the most bandwidth-efficient thin client system, Microsoft Terminal Service. The experiment results showed that this cache scheme with a cache of 2M bytes can reduce 26.7%–42.2% data spike count and 9.9%–21.2% network traffic for the tested data, and can reduce 25.8%–38.5% noticeable long latencies for different types of applications. This scheme costs only a little additional computation time and the cache size can be negotiated between the client and server.  相似文献   

17.
Autonomous unmanned aerial vehicles are complex systems of hardware, software, and human input. Understanding this complexity is key to their development and operation. Information visualizations already exist for exploring flight logs but comprehensive analyses currently require several disparate and custom tools. This design study helps address the pain points faced by autonomous unmanned aerial vehicle developers and operators. We contribute: a spiral development process model for grounded evaluation visualization development focused on progressively broadening target user involvement and refining user goals; a demonstration of the model as part of developing a deployed and adopted visualization system; a data and task abstraction for developers and operators performing post-flight analysis of autonomous unmanned aerial vehicle logs; the design and implementation of Data Comets , an open-source and web-based interactive visualization tool for post-flight log analysis incorporating temporal, geospatial, and multivariate data; and the results of a summative evaluation of the visualization system and our abstractions based on in-the-wild usage. A free copy of this paper and source code are available at osf.io/h4p7g  相似文献   

18.
Rectangular treemaps are often the method of choice to visualize large hierarchical datasets. Nowadays such datasets are available over time, hence there is a need for (a) treemaps that can handle time-dependent data, and (b) corresponding quality criteria that cover both a treemap's visual quality and its stability over time. In recent years a wide variety of (stable) treemapping algorithms has been proposed, with various advantages and limitations. We aim to provide insights to researchers and practitioners to allow them to make an informed choice when selecting a treemapping algorithm for specific applications and data. To this end, we perform an extensive quantitative evaluation of rectangular treemaps for time-dependent data. As part of this evaluation we propose a novel classification scheme for time-dependent datasets. Specifically, we observe that the performance of treemapping algorithms depends on the characteristics of the datasets used. We identify four potential representative features that characterize time-dependent hierarchical datasets and classify all datasets used in our experiments accordingly. We experimentally test the validity of this classification on more than 2000 datasets, and analyze the relative performance of 14 state-of-the-art rectangular treemapping algorithms across varying features. Finally, we visually summarize our results with respect to both visual quality and stability to aid users in making an informed choice among treemapping algorithms. All datasets, metrics, and algorithms are openly available to facilitate reuse and further comparative studies.  相似文献   

19.
ABSTRACT

Context-aware systems enable the sensing and analysis of user context in order to provide personalised services. Our study is part of growing research efforts examining how high-dimensional data collected from mobile devices can be utilised to infer users’ dynamic preferences that are learned over time. We suggest novel methods for inferring the category of the item liked in a specific contextual situation, by applying encoder-decoder learners (long short-term memory networks and auto encoders) on mobile sensor data. In these approaches, the encoder-decoder learners reduce the dimensionality of the contextual features to a latent representation which is learned over time. Given new contextual sensor data from a user, the latent patterns discovered from each deep learner is used to predict the liked item’s category in the given context. This can greatly enhance a variety of services, such as mobile online advertising and context-aware recommender systems. We demonstrate our contribution with a point of interest (POI) recommender system in which we label contextual situations with the items’ categories. Empirical results utilising a real world data set of contextual situations derived from mobile phones sensors log show a significant improvement (up to 73% improvement) in prediction accuracy compared with state of the art classification methods.  相似文献   

20.
Retrieving charts from a large corpus is a fundamental task that can benefit numerous applications such as visualization recommendations. The retrieved results are expected to conform to both explicit visual attributes (e.g., chart type, colormap) and implicit user intents (e.g., design style, context information) that vary upon application scenarios. However, existing example-based chart retrieval methods are built upon non-decoupled and low-level visual features that are hard to interpret, while definition-based ones are constrained to pre-defined attributes that are hard to extend. In this work, we propose a new framework, namely WYTIWYR (What-You-Think-Is-What-You-Retrieve), that integrates user intents into the chart retrieval process. The framework consists of two stages: first, the Annotation stage disentangles the visual attributes within the query chart; and second, the Retrieval stage embeds the user's intent with customized text prompt as well as bitmap query chart, to recall targeted retrieval result. We develop aprototype WYTIWYR system leveraging a contrastive language-image pre-training (CLIP) model to achieve zero-shot classification as well as multi-modal input encoding, and test the prototype on a large corpus with charts crawled from the Internet. Quantitative experiments, case studies, and qualitative interviews are conducted. The results demonstrate the usability and effectiveness of our proposed framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号