首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Intermetallics》2007,15(3):382-395
The effects of alloying on the microstructures, solidification path, phase stability and oxidation kinetics of Nbss/Nb5Si3 base in situ composites of the Nb–Ti–Si–Al–Cr–Mo–Hf–Sn system have been investigated in this study. All the studied alloys are classified as hyper-eutectic Nb silicide base in situ composites and have lower densities compared to nickel-based superalloys. The Nb3Si silicide formed in the Hf-free alloys and transformed to Nbss and αNb5Si3 during heat treatment at 1500 °C. This transformation was enhanced by the addition of Ti. The Nbss and Nb5Si3 were the equilibrium phases in the microstructures of the Hf-free alloys. In the presence of Ti, the βNb5Si3 only partially transformed to αNb5Si3, suggesting that Ti stabilises the βNb5Si3 to lower temperatures (at least to 1300 °C). Furthermore, alloying with Hf stabilised the hexagonal γNb5Si3 (Mn5Si3-type) silicide in the Hf-containing alloys. The addition of Sn promoted the formation of the Si-rich C14 Laves phase and stabilised it at 1300 °C. This is attributed to the Sn addition decreasing the solubility of Cr in the Nbss of the Nb–Ti–Si–Al–Cr–Mo–Hf–Sn system whilst increasing the Si solubility. The Si solubility in the C14 Laves phase was in the range ∼6.6 to 10.5 at%. The lattice parameter of the Nbss in each alloy increased after heat treatment signifying the redistribution of solutes between the Nbss and the intermetallic phases. The oxidation resistance of the alloys at 800 °C and 1200 °C increased significantly by alloying with Ti and Sn. Pest oxidation behaviour was exhibited by the Nb–18Si–5Al–5Cr–5Mo (as cast), Nb–24Ti–18Si–5Al–5Cr–5Mo (as cast), Nb–24Ti–18Si–5Al–5Cr–2Mo (heat treated) and Nb–24Ti–18Si–5Al–5Cr–2Mo–5Hf (heat treated) alloys at 800 °C. Pesting was eliminated in the alloy Nb–24Ti–18Si–5Al–5Cr–2Mo–5Hf–5Sn at 800 °C, indicating that the addition of Sn plays an important role in controlling the pest oxidation behaviour at intermediate temperatures. The oxidation behaviour of all the alloys at 800 °C and 1200 °C was controlled by the oxidation of the Nbss and was sensitive to the area fraction of Nbss in the alloy.  相似文献   

2.
A Ti5Si3-containing multiphase MoSiBTiC alloy with a composition of 38Mo–30Ti–17Si–10C–5B (at.%) was designed and produced by arc-melting. The alloy was composed of five phases—Mo solid solution (Moss), Mo3Si, Mo5SiB2 (T2), Ti5Si3 and TiC—and consistently has good thermal stability at least up to 1700 °C. The density of the alloy was ∼7.0 g/cm3, which is considerably smaller than that of Ni-base superalloys. Microstructure was carefully examined and microstructural anisotropy was confirmed. The anisotropy was considered to be generated by thermal gradient during the solidification process. Microcracking was remarkable across the primary Ti5Si3 phase, which was caused by thermal expansion anisotropy of the Ti5Si3 phase. High-temperature deformability was examined by high-temperature compression tests at 1500 °C. Two kinds of loading axes were chosen for the compression tests with respect to the microstructural anisotropy. The alloy exhibited a peak stress of 450–550 MPa, followed by good deformability at the testing temperature. Microstructure refinement and reduction in microcrack density were observed after hot working. Oxidation tests were conducted on the alloy at 1100 °C and 1300 °C for 24 h. The oxidation curves demonstrated that rapid mass loss finished within several minutes. After that, the mass loss began to slow down and then the specimens' mass decreased almost linearly with increasing testing time. Cross-section observation indicated that oxygen propagated through Moss, whereas T2 and Ti5Si3 phases acted as barriers against oxygen attack during the tests. In addition, it was found that the alloy gained better oxidation resistance after high-temperature deformation, suggesting a positive effect of phase refinement on its high-temperature oxidation resistance.  相似文献   

3.
This paper reports the effects of adding from 2 to 8 at.% tin on the oxidation behaviour of Nb/Nb5Si3 composites at 815 °C and at higher temperatures (1100 and 1200 °C). The role of tin in the elimination of pesting and in the oxidation process at high temperatures was established. The consumption of elements with a higher affinity for oxygen than Sn induces the accumulation of tin at the oxide/internal oxidation zone boundary. Low melting point phases (NbSn2 and/or pure Sn) form at 815 °C, whereas a layer of M5Si3 and Nb5SiSn2 forms at 1100 and 1200 °C. Once these products are formed, they generate an oxygen diffusion barrier and allow the elimination of pesting. However, for long oxidation processes at 1100 °C, the oxidation rate of Nb/Nb5Si3 composites containing tin should be higher than that for tin-free composites. Moreover, some oxidation results have suggested that the presence of A15-(Nb,Ti)3(Sn,Ti) in the microstructure of composites with at.%Sn > 2 can severely impact the low temperature fracture toughness of these composites.  相似文献   

4.
《Intermetallics》2006,14(3):227-235
The effects of Ti and Mo additions on phase selection, phase transformations and microstructure development in as cast and heat-treated Nb–Si–Cr–Al in situ composites have been investigated. The βNb5Si3 was formed in all the as cast alloys, which are classified as hyper-eutectic alloys. After heat treatment at 1500 °C, the βNb5Si3 transformed to αNb5Si3 completely or partially. The lattice parameter of the bcc Nb solid solution (Nbss) decreased with the addition of Ti and with increasing Mo concentration. The C14–Cr2Nb Laves phase was absent in the alloys with Ti addition at 24at.% in the presence of Mo (≤5 at.%). The eutectoid decomposition of Nb3Si to Nbss and αNb5Si3 was very sluggish in the alloy without Ti but it was enhanced with the addition of Ti. The partitioning of Ti between the Nbss and (Nb,Ti)5Si3 led to the formation of Ti-rich (Nb,Ti)5Si3, where the concentration of Ti was about 30.3 at.% in the heat treated microstructure. Nbss particles precipitated inside αNb5Si3 in the heat treated alloys.  相似文献   

5.
《Intermetallics》2006,14(5):537-543
Ti5Si3 has been extensively studied as a candidate material for high temperature application due to its high melting point (2130 °C), low density (∼4.3 g/cm3) and excellent oxidation resistance in oxygen above 1000 °C. However, stoichiometric Ti5Si3 alloy experiences accelerated oxidation during exposure in air above 1000 °C. It was proposed that nitrogen was responsible for the increased oxidation in air. In the present study, the isothermal reaction kinetics of Ti5Si3 in nitrogen at 1000 °C was investigated. Compared to a slow parabolic oxidation rate in oxygen, a faster linear reaction rate was observed when Ti5Si3 is exposed to nitrogen. Further studies on the oxidation behavior for changing nitrogen/oxygen atmospheres showed that Ti5Si3 is stable for exposure up to 400 h at 1000 °C when the gas contained 50% N2. Breakaway oxidation occurs after short exposures when the gas contained at least 75% N2, and the reaction rate increased as the concentration of N2 increased. Furthermore, time to breakaway oxidation decreases with the increasing nitrogen partial pressure. Extensive analysis of the oxidation products with SEM and XRD revealed that the formation and fast growth of a nitride-containing subscale interferes with the establishment of the continuous protective silica scale and contributes to the breakaway oxidation.  相似文献   

6.
A SiO2–Al2O3–glass composite coating was prepared on Ti–6Al–4V alloy by air spraying and subsequent firing. The oxidation behavior of the specimens at 800 °C and 900 °C for 100 h was studied. The thermal shock resistance of the coating was tested by heating up to 900 °C and then quenching in water. The composite coating acted as an oxygen migration barrier and exhibited good resistance against high temperature oxidation, thermal shock, and oxygen permeation on the Ti–6Al–4V alloy. Coating/alloy interfacial reaction occurred, forming a Ti5Si3/Ti3Al bilayer structure. A thin Al2O3 rich layer formed beneath the composite coating during oxidation at 900 °C.  相似文献   

7.
Y and Al modified silicide coatings were prepared on an Nb–Ti–Si based ultrahigh temperature alloy by co-depositing Si, Al and Y at 1150 °C for up to 10 h, respectively. The deposition of Al and Si occurred in a sequential manner during the pack cementation process. At the initial stage, the element deposited was primarily Al with very little Si and an Al3(Nb,X) (X represents Ti, Cr and Hf elements) layer formed preferentially. After a short period of holding time, Si started depositing and Si–Al co-deposition took place. However, this Si–Al co-deposition period was not long. When the holding time was longer than 1 h at 1150 °C, Si deposition dominated the coating growth process. The coating growth kinetics at 1150 °C followed a parabolic law. The coating prepared at 1150 °C for 10 h had a multi-layer structure, with a thick (Nb,X)Si2 outer layer, a thin (Ti,Nb)5Si4 middle layer and an Al, Cr-rich inner layer. The coating could protect the Nb–Ti–Si based alloy from oxidation at 1250 °C in air for at least 100 h. The excellent oxidation resistance of the coating was attributed to the formation of a dense scale mainly consisted of TiO2, SiO2 and Al2O3.  相似文献   

8.
《Intermetallics》2006,14(6):639-659
Niobium silicide-based in situ composites are Nb-base alloys with high Si content that have the potential for higher temperature capability than the Ni-base superalloys. Microstructure-property studies of these alloys have been the subject of many research programmes, where the differentiation between the αNb5Si3 and βNb5Si3 is usually not clear, even though it is essential to understanding the solidification of the alloys and the stability of their microstructures at high temperatures. In this work, the effects of Cr (5 or 8 at.%) and Ta (6 at.%) in the microstructures of as-cast and heat-treated Nb–24Ti–18Si–5Al in situ composites have been studied. The main phases observed in the as-cast and heat-treated (100 h at 1400 or 1500 °C) alloys were the niobium solid solution, (Nb,Ti)ss, the niobium 5–3 silicides, αNb5Si3 and βNb5Si3, and a Cr-rich C14 silicide Laves phase. During solidification, Al additions promoted the formation of βNb5Si3, while the Cr additions caused the appearance of the C14 silicide Laves phase that was probably formed congruently from the remaining liquid. During heat treatment, the βNb5Si3 phase transformed to αNb5Si3 according to the reaction βNb5Si3→αNb5Si3+(Nb,Ti)ss. The Cr addition lowered the melting temperature of the alloys as liquation was observed after 100 h at 1500 °C in the two Cr-rich alloys. Ta and Cr retard the βNb5Si3→αNb5Si3+(Nb,Ti)ss transformation. Solid state diffusion was sluggish in the presence of Ta, but the Ta addition did not destabilize the three-phase equilibrium among (Nb,Ti)ss, αNb5Si3 and the C14 silicide Laves phase, in the Nb–24Ti–18Si–6Ta–8Cr–4Al alloy.  相似文献   

9.
《Intermetallics》2007,15(3):270-281
The effect of Sn addition on the oxidation of the Nb–24Ti–18Si–5Al–5Cr–2Mo–5Hf–5Sn (at.%) alloy (JG6) in the as cast (AC) and heat treated (HT) conditions was studied at 800 °C and 1200 °C in static air using thermo-gravimetry and microstructural analysis. The oxidation kinetics, morphology and microstructure of the oxide scale and the microstructure of the bulk of the oxidised alloy were investigated. Oxidation occurred by inward oxygen anion diffusion. The oxidation of JG6 at 800 °C and 1200 °C is compared with the oxidation of Sn-free Nb–Ti–Si–Cr–Al–Mo–Hf alloys and is found to have been improved by the addition of Sn. At 800 °C pest oxidation, which was exhibited by the heat treated Nb–24Ti–18Si–5Al–5Cr–2Mo–5Hf alloy (JG4-HT), was eliminated by alloying with 5 at.% Sn. The elimination of pesting at 800 °C is attributed to the nature of the Nb solid solution in the alloy which consists of Sn-rich, Si-rich and Ti lean solid solution usually surrounded by Sn-poor, Si-poor and Ti-rich solid solution. The oxide scales that formed at 1200 °C on JG6 did not separate from the base metal and consisted of Nb2O5, TiO2, SiO2, HfO2 and TiNb2O7. TiN, instead of TiO2, and the (Nb,Ti)5(Sn1−xSix)3 phase, which is considered as a ternary phase based on Nb5Sn2Si, are formed in the diffusion zone of the alloys JG6-AC and JG6-HT after oxidation at 1200 °C. The formation of these phases in the oxidised alloys JG6-AC and JG6-HT controlled the penetration of oxygen into the base material. The better oxidation performance of JG6-AC compared to JG6-HT at 1200 °C is attributed to the formation of Nb3Sn in the former. It is suggested that the presence of the Sn-poor, Si-poor and Ti-rich Nbss in the microstructure is a key to the formation of the Nb3Sn phase at the scale/diffusion zone interface in the JG6-AC oxidised at 1200 °C.  相似文献   

10.
MoSi2 and Mo(Si, Al)2 coatings were prepared on Mo–0.5Ti–0.1Zr–0.02C alloy using pack cementation process. Oxidation studies revealed that Mo(Si, Al)2 coating had a much superior oxidation resistance in the temperature range from 400 to 900 °C, where pest disintegration of MoSi2 occurs due to internal oxidation. The growth kinetics of Al2O3 layer formed on Mo(Si, Al)2 coating was much slower than that of SiO2 layer formed on MoSi2 coatings during oxidation.  相似文献   

11.
《Intermetallics》2006,14(6):585-591
The present work reports on the preparation of two-phase TiSS+Ti6Si2B alloys by high-energy milling and subsequent heat treatment. The milled and heat-treated products were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and microanalysis via WDS. Results indicated the dissolution of silicon and boron atoms into the Ti lattice to form supersaturated solid solutions during the ball milling of Ti–10Si–5B and Ti–20Si–10B powders. TiB2 precipitates were formed during ball milling, and the metastable structures were decomposed due to the released heat from its exothermic formation. After heat treatment at 1100 °C for 4 h, the equilibrium microstructures of the Ti–10Si–5B and Ti–20Si–10B alloys indicated the majority presence of the Ti and Ti6Si2B phases. TiB precipitates were found in Ti–10Si–5B and Ti–20Si–10B powders after heat treatment at 1200 °C for 16 h, indicating that the composition was moved from two-phase Ti+Ti6Si2B region to the three-phase Ti+Ti6Si2B+TiB field.  相似文献   

12.
13.
A new TiAl–2Nb–2Mo beta gamma alloy was synthesized by powder metallurgy process. HIP’ed and vacuum heat treated specimens were isothermally oxidized at 800 °C and 900 °C in air up to 500 h. The TiAl–2Nb–2Mo alloy oxidized parabolically up to 500 h at both 800 °C and 900 °C. The oxides consisted of outer TiO2 layer, intermediate Al2O3 layer, and inner TiO2 rich mixed layer and the oxidation mechanisms of the alloy were identical at both temperatures. During oxidation, the degradation of lamellar colonies formed a diffusion zone just below the oxide/substrate interface consisting of γ-TiAl matrix and dispersed beta phases which contained high concentration of Nb and Mo. The oxidation rate of the TiAl–2Nb–2Mo alloy is more sensitive to temperature than those of the Ti–48Al–2Nb–2Cr and Ti–48Al–2Nb–2Cr–W alloys.  相似文献   

14.
利用连续沉积的包埋渗法,在钼表面制备了(Ti,Mo)Si2/MoSi2复合涂层。利用X射线衍射、扫描电子显微镜、能谱仪和热力学计算对涂层进行了表征与反应机理分析。结果表明,共沉积法无法实现Ti的有效沉积。先渗Ti、再渗Si的两步沉积工艺能有效制备Ti改性硅化物涂层。涂层分为3层,最外层为(Ti,Mo)Si2三元化合物层,次外层为MoSi2层,次外层与基体间为Mo5Si3过渡层。渗硅温度对涂层结构无明显影响。Ti改性硅化物涂层的生长速率略低于单一渗硅涂层的生长速率。(Ti,Mo)Si2/MoSi2复合涂层的形成由Ti、Si内扩散控制。Ti元素集中在涂层表层,Si元素通过(Ti,Mo)Si2化合物层与基体作用形成MoSi2层和Mo5Si3过渡层。渗Ti过程中,埋渗料间反应会引入游离态铝氟化物AlF3。在随后的渗硅过程中,游离态Al以Al3Mo的形式在(Ti,Mo)Si2层中靠近MoSi2层的上界面处析出。在1200 ℃周期性氧化过程中,(Ti,Mo)Si2/MoSi2复合涂层持续循环氧化180 h后未出现明显失重。(Ti,Mo)Si2层氧化形成的SiO2与TiO2致密复合氧化层能填充涂层表面裂纹,持续阻碍氧扩散,因此其在周期性氧化环境下的抗氧化性能显著优于单一渗硅涂层。  相似文献   

15.
The effects of Ti and Ge on the microstructure and hardness of the as cast and heat treated Nb-24Ti–18Si–5Ge (at.%) alloy (ZF3) were studied. There was macrosegregation of Si. The phases present in the as cast alloy (ZF3-AC) were the (Nb,Ti)ss, and the (Nb,Ti)3(Si,Ge), β(Nb,Ti)5(Si,Ge)3 and hexagonal (Ti,Nb)5(Si,Ge)3 silicides, with the latter forming a eutectic with the solid solution. The same phases were present after heat treatment at 1200 °C for 100 h (ZH3-HT12) but only the (Nb,Ti)ss, and the (Nb,Ti)3(Si,Ge) and (Nb,Ti)5(Si,Ge)3 silicides were present after 100 h at 1500 °C (ZF3-HT15) where TiO2 was also formed. Alloying with Ti did not stabilise the (Nb,Ti)ss + (Nb,Ti)3Si eutectic. The formation of the eutectic in ZF3-AC was strongly influenced by the partitioning behaviour of Ti in the solidifying melt that was enhanced by the presence of Ge. There were Ti rich areas in the (Nb,Ti)ss and the (Nb,Ti)3(Si,Ge) silicide only in ZF3-AC. The solubility of Ge in (Nb,Ti)3(Si,Ge) increased after heat treatment at 1500 °C. The transformation of β(Nb,Ti)5(Si,Ge)3 to α(Nb,Ti)5(Si,Ge)3 progressed from ZF3-HT12 to ZF3-HT15 but equilibrium was not reached in ZF3-HT15. The synergy of Ti with Ge resulted to a strong hardening effect and a remarkable retention of the hardness. Alloying with Ti led to a reduction of the hardness of Nb5Si3 and to an increase of the hardness of Nb3Si. The synergy of Ti with Ge resulted to a strong hardening effect for the (Nb,Ti)ss.  相似文献   

16.
The phase equilibria in the Co–Ti–V ternary system have been investigated by means of optical microscopy (OM), electron probe microanalyzer (EPMA), differential scanning calorimetry (DSC), field emission scanning electron microscope (SEM) and X-ray diffraction (XRD). The mechanical properties were measured by compressive tests. Four isothermal sections of the Co–Ti–V ternary system at 800 °C, 1000 °C, 1100 °C and 1200 °C were experimentally established. The results show that: (1) there is no ternary compound in this system; (2) the CoTi2 phase and Co3Ti phase stabilized by the V addition; (3) a large solubility of Ti in the σ-Co2V3 phase was observed at all isothermal sections of 800 °C, 1000 °C, 1100 °C and 1200 °C; (4) The alloy with the distribution of fine cuboidal Co3Ti (L12) in (αCo) phase was observed. (5) The compressive strength of Co77.29Ti5.83V16.88 (at.%) alloy at room temperature was measured to be about 1985 MPa. The newly determined phase equilibria in this system will provide useful information for the development of Co-based and Ti-based materials.  相似文献   

17.
MoSi2 samples were prepared by hot uniaxial pressing from a 2 μm grain-size powder of commercially available MoSi2. The oxidation behaviour of MoSi2 was systematically studied from 400 °C to 1400 °C, which includes the pest-oxidation temperature range. It was observed that the rate and mechanism for oxidation of MoSi2 change significantly with increasing temperature. Five temperature regimes have to be considered regarding both kinetic results and cross-sections: i) 400 < T < 550 °C; ii) 550 ≤ T < 750 °C; iii) 750 ≤ T < 1000 °C; iv) 1000 ≤ T < 1400 °C; v) T ≥ 1400 °C. In the first range, pesting did not occur in samples that were free of cracks and residual stresses and the oxidation kinetics were governed by surface or phase boundary reactions. Above 550 °C, there was a change in the physical properties of the oxidation products due to the evaporation of MoO3. The formation of Mo5Si3 was observed above 800 °C showing that the thermodynamic previsions were satisfied above this temperature. At higher temperatures (>1000 °C), the oxide scale became very protective and transport in the silica scale (amorphous and β cristobalite) governed the oxidation kinetics. The Mo5Si3 phase did not appear anymore at 1400 °C, indicating that another oxidation mechanism has to be proposed.  相似文献   

18.
Ti46Al7Nb alloy has been used as the research substrate material for the deposition of water-based slurries containing Al and Si powders. The diffusion treatment has been carried out at 950 °C for 4 h in Ar atmosphere. The structure of the silicon-modified aluminide coatings 40 μm thick is as follows: (a) an outer zone consisting of TiAl3 phase and titanium silicides formed on the matrix grain boundaries composed of TiAl3–type Ti5Si3; (b) a middle zone containing the same phase components with the matrix TiAl3 and the silicides Ti5Si3, which formed columnar grains; (c) an inner zone, 2 μm thick, consisting of TiAl2 phase. Cyclic oxidation tests were conducted in 30 cycles (690 h at high temperature) and showed a remarkably higher oxidation resistance of the Ti46Al7Nb alloy with the protective coating in comparison with the uncoated sample.  相似文献   

19.
The aim of the present investigation was to gain an initial understanding of the effect of (macro-) alloying with Ti on the oxidation behavior of Mo–Si–B alloys in the ternary phase region of Mo_ss–Mo3Si–Mo5SiB2 at 820–1,300 °C. Motivated by recent studies and thermodynamic calculations, the alloy compositions Mo–9Si–8B–29Ti (at.%) and Mo–12.5Si–8.5B–27.5Ti (at.%) were selected and synthesized by arc-melting. Compared to the reference alloy Mo–9Si–8B, superior initial oxidation rates at 1,100–1,300 °C as well as a significant density reduction by nearly 18 % were observed. Due to enhanced initial evaporation of MoO3 and mainly inward diffusion of oxygen, a borosilicate-rutile duplex scale with a continuous TiO2 phase had formed. Detailed investigations of the oxidation mechanism by SEM, EDX, XRD and confocal micro-Raman spectroscopy indicated that Ti alloying is promising with regard to further improvement of the oxidation resistance as well as the strength-to-weight ratio of Mo–Si–B alloys.  相似文献   

20.
Protective coating systems were applied to Mo–9Si–8B (at.%) alloys to prevent oxidation at elevated temperatures. The coatings produced by magnetron sputtering and subsequent annealing consisted of an outer oxidation protection layer and an interlayer between this and the substrate. Three amorphous outer layers with different compositions were deposited: Mo–45Si–25B, Mo–55Si–10B and Mo–29Si–15B (all in at.%). The interlayer was selected to give a diffusion barrier with the composition of the Mo5SiB2 (T2) phase. All coatings were dense and well-adherent. During vacuum annealing the amorphous as-deposited coatings became crystalline exhibiting mainly the intermetallic Mo5SiB2 compound as interlayer and the MoSi2, Mo5Si3 and MoB phases in the top layers. The samples were exposed to dry laboratory air in the pesting regime at 800 °C and above, i.e. at 1000 and 1300 °C for up to 100 h under cyclic conditions. All coatings were protective at 800 and 1000 °C for at least 100 h and showed a marked improvement in mass change compared to the uncoated substrate. For protection at 800 °C higher boron content is preferential, while at higher oxidation temperatures a lower boron content provides improved oxidation protection. At 1300 °C stress induced failures like cracking, spallation and buckling occurred due to the relatively high CTE mismatch between PVD coating and substrate. Even though, the mass change was still markedly reduced as compared to the bare substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号