首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 665 毫秒
1.
基于数控成形磨齿机加工齿轮的几何原理和机床运动学原理,建立磨削力简化模型,经磨削力经验公式计算得出砂轮进给速度与磨削力关系,分析磨削力在不同砂轮进给速度下的变化趋势。通过搭建振动测试平台,采集振动信号,对振动信号进行快速傅里叶变换,分析不同砂轮进给速度下振动信号的变化,进而得出砂轮进给速度、磨削力和振动特性之间的关系,为提高齿面磨削质量提供了参考依据。  相似文献   

2.
以外圆车削为研究对象,分析车削状态下工件-刀具系统耦合振动动态特性,建立工件-刀具系统非线性动力学模型,得出耦合作用下刀具系统振动微分方程。利用振动测试系统获取刀尖位置在不同进给速度和转速下的振动信号,通过时域和频域分析,探讨刀具振动信号随切削参数的变化规律。研究表明:相同切削条件下,随着进给速度的增加,刀具振动幅值增大,但刀具振动主频变化不大,且振动能量变化不明显。随着主轴转速的增加,刀具振动加速度明显增加。  相似文献   

3.
通过PCD刀具切削天然大理石的试验研究,分析了在不同加工参数条件下对PCD刀具切削性能的影响以及刀具的磨损机理。试验结果表明:PCD刀具在加工过程中的磨损机理主要表现为磨粒的磨损、剥落,聚晶层的破损与结合剂破坏等;刀具主轴转速为12 000 r/min、进给速度为1 000 mm/min、切削深度为0.5 mm时,刀具的磨损量最小;且磨损量随刀具主轴转速的增加而降低,随刀具的进给速度和切削深度的增加而增加。  相似文献   

4.
通过建立工件的振动力学模型,得出工件振动能量的解析公式。利用QLVC-ZSA1型振动信号分析仪,测试刀具在不同进给速度下的三向振动响应。试验结果表明:刀具在z方向的振动能量最大,且振动能量随着进给速度的增加而增大。  相似文献   

5.
分析了曲线、曲面轮廓数控加工中,刀具路径曲线的几何特性与机床运动学特性的关系,建立了机床沿曲线恒速进给的运动学方程;基于虚功原理推导出刀具路径几何特性、机床特性及电机特性等之间关系的动力学方程.并用解析法,计算了在各坐标轴加速度、伺服电机额定转矩及额定转速约束条件下,机床沿曲线进给时的最大安全恒定进给速度.在最大安全恒定进给速度范围内,选择合适的进给速度,既能使加工表面粗糙度均匀,保证加工表面质量,同时又能获得较高的高速加工效率.  相似文献   

6.
超声波振动镗孔有传统镗孔无法比拟的优点,但当刀具与切削速度同向振动时,由于进给运动使得刀具与加工表面、已加工表面都有不同程度的干涉。这种干涉对加工表面质量、刀具耐用度有一定的影响。为有效解决这些问题,研究干涉现象及其影响因素,给出干涉程度的理论分析,建立了数学公式,并提出了解决干涉的方法。  相似文献   

7.
闫海鹏  吴玉厚 《表面技术》2017,46(7):245-249
目的探索PCD刀具磨损机理,以延长刀具使用寿命。方法设计正交试验,研究不同加工参数切削大理石对刀具磨损的影响情况。分析主轴转速、进给速度与切削深度对PCD刀具磨损量的影响规律,以优化切削参数来减小刀具磨损量。根据经验公式,建立单位时间刀具磨损量和固定行程磨损量模型。通过对试验过程刀具振动情况记录,结合刀具实际磨损情况,给出了刀具磨损等级。结果主轴转速的提高可以减少刀具磨损量,进给速度的增大会加剧刀具磨损,而切削深度小于1 mm时,其对刀具磨损量的影响很小,但切削深度大于1 mm时,继续增大切削深度会使刀具快速磨损。利用预测模型能够很好地对刀具磨损情况进行预判,根据磨损等级,得出刀具与机床发生共振时磨损最为严重,在刀具表面产生了明显的犁沟、磨损以及金刚石颗粒脱落。结论在实际加工中,通过提高主轴转速、降低进给速度以及减小切削深度有助于增强刀具的耐用度,避开共振切削参数可以有效降低刀具磨损,主轴转速、进给速度、切削深度分别为12000r/min、500 mm/min、0.5 mm时的切削效果较佳,有最小的刀具磨损量。  相似文献   

8.
研究切削参数对PVD涂层刀具磨损面积的影响。利用正交试验进行切削试验,采用网格划分方法计算刀具磨损面积,分析刀具磨损面积与主轴转速、进给速度和切削深度之间的关系,根据试验结果得到:提高主轴转速能够降低刀具磨损面积,增加进给速度与切削深度将使刀具磨损面积增大。根据经验公式,利用最小二乘法建立刀具磨损面积预测模型,通过F检验可知模型具有较高的显著性,并得到切削参数中影响刀具磨损面积的主次关系为切削深度、主轴转速、进给速度。  相似文献   

9.
雕刻表面球形铣削加工中,根据刀头的受力模型,可以计算整个刀具路径上刀头的受力.刀具路径上加工深度变化时,若采用恒进给率,则刀具受力是变化的,为了安全保险起见,往往按最大受力来选择较低的恒进给率,整个加工效率很低.采用变进给率加工,即加工深度小时提高进给率,使刀具在整个路径上受力均匀.本文给出了路径上力的计算仿真方法,以及分段进给率的计算方法,可以指导实际的加工过程,这样既保证了加工过程的安全,又提高了生产率.  相似文献   

10.
为了分析在超声椭圆振动铣削加工中振动参数和切削参数对TC4工件残余应力的影响,运用ABAQUS有限元软件模拟了钛合金超声椭圆振动铣削加工过程。采用单因素试验法和正交试验法,研究进给方向上振动参数和切削参数对工件残余应力的影响,并用极差法分析实验数据得到其优化参数组合。研究表明,在钛合金超声椭圆振动铣削加工中,对工件的残余应力影响因素从小到大依次为:切削速度,幅值,振动频率,每齿进给速度;在一定的研究范围内,振动频率和振幅的增大,刀具和工件接触时间更短,切削热更易消散,导致残余应力减小;切削速度和进给速度的增大,加剧了刀具和工件之间的摩擦,产生更多的切削热,导致残余应力增大。  相似文献   

11.
Time domain model of plunge milling operation   总被引:8,自引:0,他引:8  
Plunge milling operations are used to remove excess material rapidly in roughing operations. The cutter is fed in the direction of spindle axis which has the highest structural rigidity. This paper presents time domain modeling of mechanics and dynamics of plunge milling process. The cutter is assumed to be flexible in lateral, axial, and torsional directions. The rigid body feed motion of the cutter and structural vibrations of the tool are combined to evaluate time varying dynamic chip load distribution along the cutting edge. The cutting forces in lateral and axial directions and torque are predicted by considering the feed, radial engagement, tool geometry, spindle speed, and the regeneration of the chip load due to vibrations. The mathematical model is experimentally validated by comparing simulated forces and vibrations against measurements collected from plunge milling tests. The study shows that the lateral forces and vibrations exist only if the inserts are not symmetric, and the primary source of chatter is the torsional–axial vibrations of the plunge mill. The chatter vibrations can be reduced by increasing the torsional stiffness with strengthened flute cavities.  相似文献   

12.
A predictive time domain chatter model is presented for the simulation and analysis of chatter in milling processes. The model is developed using a predictive milling force model, which represents the action of milling cutter by the simultaneous operations of a number of single-point cutting tools and predicts the milling forces from the fundamental workpiece material properties, tool geometry and cutting conditions. The instantaneous undeformed chip thickness is modelled to include the dynamic modulations caused by the tool vibrations so that the dynamic regeneration effect is taken into account. Runge–Kutta method is employed to solve the differential equations governing the dynamics of the milling system for accurate solutions. A Windows-based simulation system for chatter in milling is developed using the predictive model, which predicts chatter vibrations represented by the tool-work displacements and cutting force variations against cutter revolution in both numerical and graphic formats, from input of tool and workpiece material properties, cutter parameters, machine tool characteristics and cutting conditions. The system is verified with experimental results and good agreement is shown.  相似文献   

13.
Modelling the machining dynamics of peripheral milling   总被引:2,自引:0,他引:2  
The machining dynamics involves the dynamic cutting forces, the structural modal analysis of a cutting system, the vibrations of the cutter and workpiece, and their correlation. This paper presents a new approach modelling and predicting the machining dynamics for peripheral milling. First, a machining dynamics model is developed based on the regenerative vibrations of the cutter and workpiece excited by the dynamic cutting forces, which are mathematically modelled and experimentally verified by the authors [Liu, X., Cheng, K., Webb, D., Luo, X.-C. Improved dynamic cutting force model in peripheral milling—Part 1: Theoretical model and simulation. Int. J. Adv Manufact Tech, 2002, 20, 631–638; Liu, X., Cheng, K., Webb, D., Longstaff, A. P., Widiyarto, H. M., Jiang, X.-Q., Blunt, L., Ford, D. Improved dynamic cutting force model in peripheral milling—Part 2: Experimental verification and prediction. Int. J. Adv Manufact Tech, 2004, 24, 794–805]. Then, the mechanism of surface generation is analysed and formulated based on the geometry and kinematics of the cutter. Thereafter a simulation model of the machining dynamics is implemented using Simulink. In order to verify the effectiveness of the approach, the transfer functions of a typical cutting system in a vertical CNC machine centre were measured in both normal and feed directions by an instrumented hammer and accelerometers. Then a set of well-designed cutting trials was carried out to record and analyse the dynamic cutting forces, the vibrations of the spindle head and workpiece, and the surface roughness and waviness. Corresponding simulations of the machining processes of these cutting trials based on the machining dynamics model are investigated and the simulation results are analysed and compared to the measurements. It is shown that the proposed machining dynamics model can well predict the dynamic cutting forces, the vibrations of the cutter and workpiece. There is a reasonable agreement between the measured and predicted roughness/waviness of the machined surface. Therefore the proposed approach is proven to be a feasible and practical approach analysing machining dynamics and surface roughness/waviness for shop floor applications.  相似文献   

14.
Inserted cutters are widely used in roughing and finishing of parts. The insert geometry and distribution of inserts on the cutter body vary significantly in industry depending on the application. This paper presents a generalized mathematical model of inserted cutters for the purpose of predicting cutting forces, vibrations, dimensional surface finish and stability lobes in milling. In this paper, the edge geometry is defined in the local coordinate system of each insert, and placed and oriented on the cutter body using the cutter's global coordinate system. The cutting edge locations are defined mathematically, and used in predicting the chip thickness distribution along the cutting zone. Each insert may have a different geometry, such as rectangular, convex triangular or a mathematically definable edge. Each insert can be placed on the cutter body mathematically by providing the coordinates of the insert center with respect to the cutter body center. The inserts can be oriented by rotating them around the cutter body, thus each insert may be assigned to have different lead and axial rake angles. By solving the mechanics and dynamics of cutting at each edge point, and integrating them over the contact zone, it is shown that the milling process can be predicted for any inserted cutter. A sample of inserted cutter modeling and analysis examples are provided with experimental verifications.  相似文献   

15.
A variety of helical end mill geometry is used in the industry. Helical cylindrical, helical ball, taper helical ball, bull nosed and special purpose end mills are widely used in aerospace, automotive and die machining industry. While the geometry of each cutter may be different, the mechanics and dynamics of the milling process at each cutting edge point are common. This paper presents a generalized mathematical model of most helical end mills used in the industry. The end mill geometry is modeled by helical flutes wrapped around a parametric envelope. The coordinates of a cutting edge point along the parametric helical flute are mathematically expressed. The chip thickness at each cutting point is evaluated by using the true kinematics of milling including the structural vibrations of both cutter and workpiece. By integrating the process along each cutting edge, which is in contact with the workpiece, the cutting forces, vibrations, dimensional surface finish and chatter stability lobes for an arbitrary end mill can be predicted. The predicted and measured cutting forces, surface roughness and stability lobes for ball, helical tapered ball, and bull nosed end mills are provided to illustrate the viability of the proposed generalized end mill analysis.  相似文献   

16.
A passive adaptor to enhance chatter stability for end mills   总被引:1,自引:0,他引:1  
A design procedure is suggested in this paper to enhance the chatter stability of an end mill cutter. Tool chatter is a well recognized self-excited vibration problem where the excitation force is the cutting force required to machine a workpiece. The cutting force magnitude is proportional to the thickness of the chip removed from the workpiece. The thickness of the chip, on the other hand, is affected by two distinct sets of events, namely, the instantaneous oscillations of the tip of the cutter and the undulations left on the surface from the earlier passes of the cutter. Hence, the excitation force, which is the cause of the oscillations, feeds on the oscillations.In this investigation, an end mill is simplified to be a beam cantilevered from a relatively rigid spindle. A local structural modification technique of the authors is then applied to this beam to suppress its proneness to excessive resonance vibrations. An add-on passive adaptor is developed for this purpose. Numerical simulations with random tip excitation and experimental verification with a scaled model are discussed. Suggested designs promise to enhance the chatter stability of a cantilevered cutter. Cutting tests are being planned for the next stage of work.  相似文献   

17.
刘洪飞 《钢管》2008,37(4):51-56
生产螺旋焊管用热轧钢带采用铣边机铣削板边可以获得满意的精加工效果,而铣边机刀块的选择极为重要。通过对铣边机铣削工艺、切削力、切削热的分析,找出了影响刀块使用寿命的原因。确定合理的铣削速度、进给量等铣削工艺参数,选择合适的硬质合金刀块,可以延长铣刀盘的使用寿命,减少生产线的停车次数。  相似文献   

18.
The radial error motion of a machine tool cutter/spindle system is critical to the dimensional accuracy of the parts to be machined. The spindle's radial error motions can be measured by mounting a sphere target onto the spindle as a reference. A set of sensors is used to measure displacements of the reference sphere in various directions to determine spindle error motions. This measurement technique can be reliably carried out when the spindle is at rest or at low rotational speeds. However, at very high speeds, the reference sphere must be carefully centered and balanced to avoid introducing additional error motions. In addition, the sensors must be held with very rigid mounts in order to avoid measurement errors caused by vibrations. For high-speed end milling spindles, the spindle is operated with a cutter. The cutter must be removed when mounting a reference sphere. Because the cutter itself can introduce errors due to centering and unbalancing effects, the error motions measured by the reference sphere method do not include the error caused by the cutter. This paper introduces a new and practical method to provide an indicator of the radial error of a motorized end-milling cutter/spindle system at very high speed rotations without the need of a reference sphere. This indicator of the radial error is based on the size of the cutting marks produced by the end mill, which is attached to the spindle. The cutting marks are circular, and their diameters are related to the radial error of the cutter/spindle system. Quantitative precision analysis was carried out to confirm the accuracy and repeatability of this new measurement technique. This technique has been implemented in order to determine the effects of the spindle speed, the level of unbalanced mass, and the spindle stiffness on the cutter/spindle's radial error. The results reveal that the centrifugal force generated by the unbalanced mass is the main factor causing the increase in radial error. One way to compensate for the effect of unbalanced mass is to increase the spindle stiffness. Experimental results confirm that a higher front bearing preload can render the spindle stiffer, thus reducing the radial error of the cutter/spindle system. Finally, it should be pointed out that the proposed cutting mark measurement cannot replace the sphere method because it cannot provide time-resolved or angle-resolved information as those obtained from polar charts. However, the proposed cutting mark measurement can provide the characterization of the spindle with the cutter attached. As a result, both methods can complement each other to provide a more complete picture of the behavior of the cutter/spindle system at high speeds.  相似文献   

19.
Chatter Stability of Plunge Milling   总被引:5,自引:0,他引:5  
Y. Altintas  J.H. Ko 《CIRP Annals》2006,55(1):361-364
Plunge milling operations are used to remove excess material in boring cylinders, roughing pockets, dies and mold cavities. This paper presents a frequency domain, chatter stability prediction theory for plunge milling. The regenerative chip thickness is modeled as a function of lateral, axial and torsional vibrations. The stability of the plunge milling is formulated as a fourth order eigenvalue problem by relating the regenerative chip thickness, cutting forces and torque, and the structural modes of the cutter. The stability lobes are predicted analytically from the eigenvalue solution. The stability lobes are experimentally proven by conducting over one hundred plunge milling tests.  相似文献   

20.
针对水下单壁钢桩切割作业需求,设计并制造水下液压钻铣切割机,以立铣刀为切割工具,使用液压缸进给、液压马达驱动铣刀钻铣及回转切割,完成切割作业。对设备的设计依据及设备的组成进行了详细描述,分析钻铣刀、驱动马达、传动系统等参数的选用,并根据设计方案制造样机。通过对水下液压钻铣切割样机的海上及车间测试,验证设备可靠性,得出样机切割效率、铣刀消耗参数等数据。实际测试表明:该设备运行可靠,且该设备加工、使用及维护成本低,适合水下单壁钢桩切割推广使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号