首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We fabricated Ga-doped ZnO (GZO) thin films on glass substrate by RF magnetron sputtering method with different conditions of Ga2O3 concentration, substrate temperature and working pressure. Next we investigated the electrical, optical and structural properties of the GZO thin films. At a substrate temperature of 300 °C, a working pressure of 1 mTorr, and a Ga2O3 concentration of 3 wt%, the GZO thin films showed the lowest resistivity of 3.16 × 10?4 Ω cm, a carrier concentration of 7.64 × 1020 cm?3 and a Hall mobility of 25.8 cm2/Vs. Moreover, the GZO thin films exhibited the highest (002) orientation under the same conditions and the full width at half maximum of X-ray peak was 0.34°. All GZO thin films showed the optical transmittance of more than 80 % in the visible range regardless of working conditions. The Burstein–Moss effect was observed by the change of doping concentration of Ga2O3. The GZO thin films were fabricated to have the good electrical and optical properties through optimizing doping concentration of Ga2O3, substrate temperature, working pressure. Therefore, we confirmed the possibility of application of GZO thin film as transparent conductive oxide used in flat panel display and solar cell.  相似文献   

2.
Mg-doped ZnO (MgZnO) films were grown on p-Si (001) substrates by dual ion beam sputtering deposition system at a constant growth temperature of 600 °C for different oxygen partial pressure. The impact of oxygen partial pressure on the structural, electrical, elemental and morphological properties was thoroughly investigated. X-ray diffraction (XRD) spectra revealed that the deposited MgZnO films were polycrystalline in nature with preferred (002) crystal orientation. The peak of MgZnO (101) plane was reduced significantly as oxygen partial pressure was increased and disappeared completely at 80 and 100 % O2. The maximum electron concentration was evaluated to be 5.79 × 1018 cm?3 with resistivity of 0.116 Ω cm and electron mobility of 9.306 cm2/V s at room temperature, for MgZnO film grown with 20 % O2. Raman spectra shows a broad peak at 434 cm?1 corresponded to E 2 high phonons mode of MgZnO wurtzite structure. The peak at 560 cm?1 corresponded to the E1 (LO) mode and was associated with oxygen deficiency in MgZnO films. Raman intensity at 560 cm?1 reduced, on increasing oxygen partial pressure. A correlation between structural, electrical, elemental and morphological properties with oxygen partial pressure was also established.  相似文献   

3.
Single hexagonal-phase MgxZn1?xO films were deposited on glass substrates by pulsed laser deposition from a ZnO target mixed with MgO. The effect of substrate temperature on the structural, electrical and optical properties was investigated by X-ray diffraction and the transmittance measurements. It was observed that Mg incorporation lead to a clear shift of the (002) peak position to lower angle with reference to pure ZnO films due to the residual stress change with deposition temperature. It was also found that Mg doping increased the resistivity by 2 orders of magnitude and the maximum resistivity was 0.072 Ω·cm at 550 °C with the carrier concentration of 1.1 × 1019 cm?3. The visible transmittance of above 80 % was obtain in the alloy films, which optical band gap was observed to increase with the substrate temperature, attaining 3.85 eV at 600 °C. The possible mechanism was discussed.  相似文献   

4.
ZnO epitaxial thin films were grown on p-type Si(100) substrates by dual ion beam sputtering deposition system. The crystalline quality, surface morphology, optical and electrical properties of as-deposited ZnO thin films at different growth temperatures were studied. Substrate temperature was varied from 100 to 600 °C at constant oxygen percentage O2/(O2 + Ar) % of 66.67 % in a mixed gas of Ar and O2 with constant chamber pressure of 2.75 × 10?4 mBar. X-Ray diffraction analyses revealed that all the films had (002) preferred orientation. The minimum value of stress was reported to be ?0.32 × 1010 dyne/cm2 from ZnO film grown at 200 °C. Photoluminescence measurements demonstrated sharp near-band-edge emission (NBE) was observed at ~375 nm along with deep level emission (DLE) in the visible spectral range at room temperature. The DLE Peak was found to have decrement as ZnO growth temperature was increased from 200 to 600 °C. The minimum FWHM of the NBE peak of 16.76 nm was achieved at 600 °C growth temperature. X-Ray photoelectron spectroscopy study revealed presence of oxygen interstitials and vacancies point defects in ZnO film grown at 400 °C. The ZnO thin film was found to be highly resistive when grown at 100 °C. The ZnO films were found to be n-type conducting with decreasing resistivity on increasing substrate temperature from 200 to 500 °C and again increased for film grown at 600 °C. Based on these studies a correlation between native point defects, optical and electrical properties has been established.  相似文献   

5.
In this research work a comparative study of pure and In-doped ZnO polycrystalline thin films was made successfully deposited onto fused silica by reactive e-beam thermal evaporation at 300 °C. The structural and optical properties were assessed by employing X-ray diffraction (XRD), Raman spectroscopy, photoluminescence atomic force microscopy and spectroscopic ellipsometry (SE). XRD pattern, EDS and the principal Raman phonon band at 438 cm?1 confirmed purely polycrystalline wurtzite structured ZnO and incorporation of In at the Zn lattice sites. In studying the structural properties, the characteristic (002) plane was used as the focal point. Structural analysis showed that with In incorporation, the crystallites exhibited a preferential orientation along (002) c-plane perpendicular to the substrate. With In-doping (3.9 at.%), the optical band-gap increased and compressive strains were developed within the film. The prominent optical phonon mode at 587 cm?1 presented a low Raman intensity for the sample prepared in the oxygen environment and was assigned to oxygen vacancies. The film thickness and optical constants [refractive index (n), extinction coefficient (k)] were determined by SE study using Cauchy curve fitting model. PL emission spectra showed strong UV emission at 370–373 nm and a feeble visible (green) emission at 512–520 nm. The UV emission showed Stoke’s shift with incorporation of In at the lattice sites as the emitted energy is lower that the band-gap energy of ZnO. The observed properties showed that ZnO can be made significantly important an electronic and optical material for various optoelectronic applications by incorporating In as the dopant material.  相似文献   

6.
Double layer Cu/GZO system was prepared at room temperature by magnetron sputtering. Electrical properties are greatly improved, while the crystal structure of GZO is deteriorated by the Cu layer; even when its thickness is only 5 nm. Furthermore, effect of thermal annealing on the optical and electrical properties has been investigated. Transmittance of Cu/GZO in the long wavelength shows an increase for the films annealed at 200 °C and below. A low resistivity of about 7.5 × 10?4 Ω cm for the Cu/GZO with a thickness of Cu 5 nm is found to be retained until 125 °C, followed by a slow increase as the temperature further increases, which is considered to be due to a significant change in the morphology of the Cu layer which is revealed by high resolution TEM observation. It is found that good optical and electrical properties of the Cu/GZO double layer system can be obtained simultaneously by optimizing annealing parameters.  相似文献   

7.
Copper doped ZnO (ZnO:Cu) nanostructured films with magnetoresistive behavior were produced by growing ZnO/Cu/ZnO arrays at room temperature (RT) by the sputtering technique on corning glass substrates. The arrays were made with two electrical insulating ZnO films of 50 and 105 nm, and a Cu film of 5 nm, both materials were deposited at RT by the RF- and DC-sputtering technique, respectively. The processing method involves two stages that proceed in the course of the growth process, the main one is originated by the non-equilibrium regime of the sputtering technique, and the second is the diffusion-redistribution of the intermediate Cu film towards the neighborhood ZnO layers aided by the nanocrystalline films character. The influence of applying an additional annealing stage to the arrays in N2 atmosphere at 250 and 350 °C by periods of 30 min were studied. The resistivity of the ZnO:Cu films can be varied from 0.0034 to 2.83 Ω-cm, corresponding to electron concentrations of 1.12?×?1021 and 7.85?×?1017 cm?3 with carrier mobility of 1.6 and 2.8 cm2/V s. Measured changes on the magnetoresistance behavior of the films at RT were of ?R?~?3% for annealed samples with electron concentration of 1.12?×?1021 cm?3. The X-ray diffraction measurements show that the films are comprised of nanocrystallites with dimensions between 13 and 20 nm in size with preferred (002) orientation. The transmittance of the films in the visible region was of 83% with an optical band gap of ~?3.3 eV for the low-resistivity samples.  相似文献   

8.
Nano transparent conductive oxide (TCO) Ga-doped ZnO (GZO) thin films with thickness from 260 nm to 620 nm were prepared on glass substrates by RF magnetron sputtering from a powder target with 3 at.% Ga2O3. The substrate temperature was kept at 300 °C. The effect of thickness on the structural, electrical, and optical properties of GZO thin films was investigated. It shows that the nano-GZO films are dense and flat, and have polycrystalline structure with preferentially in the (002) orientation. With the increase of thickness, the crystallinity and the grain sizes of the films are improved, meanwhile the carrier concentration increases and the lowest resistivity of 3.685×10−3 Ω cm occurs in the 620 nm thick GZO film. The average optical transmittance of all the films is over 80% in the visible range. Decreasing the thickness, the optical transmission of the films increase, and the absorption edge shifts to shorter wavelength, which means the optical band gap is broadened.  相似文献   

9.
Al-doped zinc oxide (AZO) thin films are prepared on polycrystalline fluorine-doped tin oxide-coated conducting glass substrates from nitrates baths by the electrodeposition process at 70 °C. The electrochemical, morphological, structural and optical properties of the AZO thin films were investigated in terms of different Al concentration in the starting solution. It was found that the carrier density of AZO thin films varied between ?3.11 and ?5.56 × 1020 cm?3 when the Al concentration was between 0 and 5 at.%. Atomic force microscopy images reveal that the concentration of Al has a very significant influence on the surface morphology and roughness of thin AZO. X-ray diffraction spectra demonstrate preferential (002) crystallographic orientation having c-axis perpendicular to the surface of the substrate and average crystallites size of the films was about 33–54 nm. With increasing Al doping, AZO films have a strong improved crystalline quality. As compared to pure ZnO, Al-doped ZnO exhibited lower crystallinity and there is a shift in the (002) diffraction peak to higher angles. Due to the doping of Al of any concentration, the films were found to be showing >80 % transparency. As Al concentration increased the optical band gap was also found to be increase from 3.22 to 3.47 eV. The room-temperature photoluminescence spectra indicated that the introduction of Al can improve the intensity of ultraviolet (UV) emission, thus suggesting its greater prospects in UV optoelectronic devices. A detailed comparison and apprehension of electrochemical, optical and structural properties of ZnO and ZnO:Al thin films is done for the determination of optimum concentration of Al doping.  相似文献   

10.
In the present paper, Ti doped ZnO films with higher conductive properties were grown on room temperature glass substrates by radio frequency magnetron sputtering and followed by annealing in vacuum. The microstructures and surface figures of the films were investigated by X-ray diffraction and scanning electronic microscopy, and its optical and electrical properties were measured using a four-point probe technique and 756-type spectrophotometer at room temperature. The results show that the preferred growth orientation of the films is (002) orientation, and after annealing in vacuum at 400 °C for 3 h, the average transmittance reduces from 90 to 80%, and resistivity reduces from 4.53 × 10?2 to 8.78 × 10?4 Ω cm.  相似文献   

11.
We developed a novel sol–gel method to prepare transparent conductive Al-doped ZnO (AZO) thin film at low temperature. The AZO nanocrystals were prepared by a solvothermal method and then they were dispersed in the monoethanolamine and methanol to form AZO colloids. A (002)-oriented ZnO thin film was used as a nucleation layer to induce the (002)-oriented growth of AZO thin films. The AZO thin films were prepared on Si(100) and fused quartz glass substrates with the (002)-oriented ZnO nucleation layer and annealed at 400 °C for 60 min. All AZO thin films showed (002) orientation. For electrical and optical measurements, the films deposited on glass substrates were post-annealed at 400 °C for 30 min in forming gas (100 % H2) to improve their conductivity. These samples had high transparency in the visible wavelength range, and also showed good conductivity. A 0.2 mol L?1 AZO solution with 3 at.% Al content was heated in a Teflon autoclave at 160 °C for 30 min to form AZO nanocrystals, and then the AZO nanocrystals were suspended in the MEA and methanol to obtain the stable AZO colloid. The Al content in the AZO nanocrystals was 2.7 at.%, and the high Al doping coefficient was mainly attributed to the formation of AZO nanocrystals in the autoclave. The AZO thin film using this colloid had the lowest resistivity of 3.89 × 10?3 Ω cm due to its high carrier concentration of 3.29 × 1020 cm?3.  相似文献   

12.
In this study, influence of RF power on the structural, morphology, electrical, composition and optical properties of Al-doped ZnO (ZnO:Al) films deposited by RF magnetron sputtering have been investigated. Films were systematically and carefully investigated by using variety of characterization techniques such as low angle X-ray diffraction, UV–visible spectroscopy, Raman spectroscopy, Hall measurement, X-ray photoelectron spectroscopy, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy etc. Low angle X-ray diffraction analysis showed that the films are polycrystalline with hexagonal wurtzite structure and which was further confirmed by Raman spectroscopy analysis. Its preferred orientation shifts from (102) to (002) with increase in RF power. The average grain size was found in the range of 15–21 nm over the entire range of RF power studied. The FE-SEM analysis showed that grain size and surface roughness of ZnO:Al films increase in with increase in RF power. The UV–visible spectroscopy analysis revealed that all films exhibit transmittance >85 % in the visible region. The optical band gap increases from 3.37 to 3.85 eV when RF power increased from 75 to 225 W. Hall measurements showed that the minimum resistivity has been achieved for the film deposited at 200 W. The improvement in the electrical properties may attribute to increase in the carrier concentration and Hall mobility. Based on the experimental results, the RF power of 200 W appears to be an optimum sputtering power for the growth of ZnO:Al films. At this optimum sputtering power ZnO:Al films having minimum resistivity (8.61 × 10?4 Ω-cm), highly optically transparent (~87 %) were obtained at low substrate temperature (60 °C) at moderately high deposition rate (22.5 nm/min). These films can be suitable for the application in the flexible electronic devices such as TCO layer on LEDs, solar cells, TFT-LCDs and touch panels.  相似文献   

13.
Ga-doped (5 wt%) zinc oxide (GZO) thin films were fabricated on corning 1737 substrates at a fixed oxygen pressure of 200 mTorr at various substrate temperatures (100–300 °C) by using pulsed laser deposition (PLD) in order to investigate the microstructure, optical, and electrical properties of the GZO thin films. It was observed that all the thin films exhibit c-axis orientation and exhibit only a (002) diffraction peak. The GZO thin film, which was fabricated at 200 mTorr and 300 °C, showed the highest (002) orientation, and the full width at half maximum (FWHM) of the (002) diffraction peak was 0.38°. The position of the XRD peak shifted to a higher angle with increase in the substrate temperature. The optical transmittance in the visible region was greater than 85%. The Burstein-Moss effect, which causes a shift toward a high photon energy level, was observed. The electrical property indicated that the highest carrier concentration (2.33 × 1021 cm−3) and the lowest resistivity (3.72 × 10−4 Ωcm) were obtained in the GZO thin film fabricated at 200 mTorr and 300 °C.  相似文献   

14.
Zinc oxide thin films have been spun coated on p-Si (100) substrates by sol–gel route. These films were annealed at different annealing temperatures from 300 to 1,000 °C in the oxygen ambient. In this way a suitable annealing temperature window for the sol–gel derived ZnO films exhibiting minimum defects (points and dislocations) and better quality (crystal and optical) was investigated. The structural and optical features of ZnO thin films have been examined by X-ray diffraction, atomic force microscopy, UV–Vis spectroscopy, and photoluminescence spectra. The results revealed that the crystallization in the films initiated at 300 °C, improved further with annealing. All the deposited films exhibited wurtzite phase with c-axis orientations. The variations in the position of characteristic (002) peak, stress, strain and lattice parameters are investigated as a function of annealing temperature. The optical band gap is not significantly affected with annealing as observed by UV–Vis transmission spectroscopy. The Photoluminescence spectra exhibited three luminescence centers. The near band edge esmission was observed in UV region which enhanced with the heat treatment, is an indication of improvement in the optical quality of films. The other two visible emissions are related to native defects in ZnO lattice were appeared only for higher annealing (≥700 °C).  相似文献   

15.
W.T. Yen  P.C. Yao  Y.L. Chen 《Thin solid films》2010,518(14):3882-1266
In this study, highly conductive films of ZnO:Ga (GZO) were deposited by pulsed direct current magnetron sputtering to explore the effect of post-annealing on the structural, electrical and optical properties of the films. XRD patterns showed that after annealing, the intensity of c-axis preferentially oriented GZO (002) peak was apparently improved. GZO film annealing at 300 °C for 0.5 h exhibits lowest resistivity of 1.36 × 10− 4 Ω cm. In addition, the film shows good optical transmittance of 88% with optical band gap, 3.82 eV. Carrier concentration and optical band gap both decreases with the annealing temperature. Besides, the near-infrared transmittance at 1400 nm is below 5%, while the reflectivity at 2400 nm is as high as 70%.  相似文献   

16.
Flexible optoelectronic devices are attractive because of light weight, small volume, flexibility and easy transport. Transparent conductive oxide thin films deposited on polymer substrates could satisfy the flexibility for optoelectronic devices. Ga-doped ZnO (GZO) films have been prepared on polycarbonate substrates by radio frequency magnetron sputtering at room temperature. The dependence of the structural, electrical, optical and adhesive properties for films on the sputtering powers was investigated. We also investigated the stability of the electrical property through doing Hall-effect measurements 18 months later. The lowest sheet resistance was 5.8 Ω/sq. After 18 months, the lowest sheet resistance was 6.5 Ω/sq. The stability of the electrical property is excellent. The average transmittance in the visible region of all the films was as high as 85 %, using air as reference. The good transparency-conducting property, excellent stability and room-temperature deposition on polymeric substrates enable GZO films to be widely used in optoelectronic devices.  相似文献   

17.
The 3 wt% Al-doped zinc oxide (AZO) thin films were fabricated on quartz substrates at a fixed oxygen pressure of 200 mTorr with various substrate temperatures (room temp. ~500 °C) by using pulsed laser deposition in order to investigate the microstructure, optical, and electrical properties of AZO thin films. All thin films were shown to be c-axis oriented, exhibiting only a (002) diffraction peak. The AZO thin film, fabricated at 200 mTorr and 400 °C, showed the highest (002) orientation and the full width at half maximum (FWHM) of the (002) diffraction peak was 0.42°. The c-axis lattice constant decreased with increasing substrate temperature. The electrical property indicated that the highest carrier concentration (1.27 × 1021 cm?3) and the lowest resistivity (6.72 × 10?4 Ωcm) were obtained in the AZO thin film fabricated at 200 mTorr and 400 °C. The optical transmittance in the visible region was higher than 80 %. The Burstein-Moss effect, which shifts to a high photon energy, was observed.  相似文献   

18.
In this study, transparent conductive Al doped zinc oxide (ZnO: Al, AZO) thin films with a thickness of 40 nm were prepared on the Corning glass substrate by radio frequency magnetron sputtering. The properties of the AZO thin films are investigated at different substrate temperatures (from 27 to 150 °C) and sputtering power (from 150 to 250 W). The structural, optical and electrical properties of the AZO thin films were investigated. The optical transmittance of about 78 % (at 415 nm)–92.5 % (at 630 nm) in the visible range and the electrical resistivity of 7 × 10?4 Ω-cm (175.2 Ω/sq) were obtained at sputtering power of 250 W and substrate temperature of 70 °C. The observed property of the AZO thin films is suitable for transparent conductive electrode applications.  相似文献   

19.
A series of aluminum doped zinc oxide thin films with different thickness (25–150 nm) were deposited on indium tin oxide coated polyethylene terephthalate substrates by radio frequency magnetron sputtering method at room temperature. The structural, optical and electrical properties of the films were investigated by X-ray Diffractometer, UV–Vis spectrometer and Hall Effect Measurement System. All the obtained films were polycrystalline with a hexagonal structure and a preferred orientation along [002] direction with the c-axis perpendicular to the substrate surface. The optical energy band gap (Eg) values of the films were found to be in the range from 3.36 to 3.26 eV, and their average optical transmissions were about 75 % in the visible region. The films had excellent electrical properties with the resistivities in the range from 2.78 × 10?5 to 2.03 × 10?4 Ω cm, carrier densities more than 3.35 × 1021 cm?3 and Hall mobilities between 5.77 and 11.13 cm2/V s.  相似文献   

20.
Annealed ZnO thin film at 300, 350, 400, 450 and 500 °C in air were deposited on glass substrate by using pulsed laser deposition. The effects of annealing temperature on the structural and optical properties of annealed ZnO thin films by grazing incident X-ray diffraction (GIXRD), transmittance spectra, and photoluminescence (PL) were investigated. The GIXRD reveal the presence of hexagonal wurtzite structure of ZnO with preferred orientation (002). The particle size is calculated using Debye–Scherrer equation and the average grain size were found to be in the range 5.22–10.61 ± 0.01 nm. The transmittance spectra demonstrate highly transparent nature of the films in visible region (>70 %). The calculation of optical band gap energy is found to be in the range 2.95–3.32 ± 0.01 eV. The PL spectra shows that the amorphous film gives a UV emission only and the annealed films produce UV, violet, blue and green emissions this indicates that the point defects increased as the amorphous film was annealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号