首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R.J. Huang  W. Xu  X.D. Xu  X.Q. Pan 《Materials Letters》2008,62(16):2381-2384
Bulk materials with the general formula of Mn3(Cu0.6NbxGe0.4 − x)N (x = 0.05, 0.1, 0.15, 0.2, 0.25), Mn3(Cu0.6Ge0.4)N and Mn3(Cu0.7Ge0.3)N were fabricated by mechanical ball milling and solid state sintering. Their thermal expansion coefficients and electrical conductivities were investigated in the temperature range of 80-300 K. It is found that the temperature interval of negative temperature expansion behavior is about 95 K in the samples of Mn3(Cu0.6Nb0.15Ge0.25)N and Mn3(Cu0.6 Nb0.2Ge0.2)N, which is twice as large as that of Mn3(Cu0.7Ge0.3)N. The negative thermal expansion of Mn3(Cu0.6Nb0.15Ge0.25)N can reach to − 19.5 × 10−6 K− 1 in the temperature range of 165 to 210 K. The electrical conductivity of this series materials is in a level of about 2.5 × 106 (Ω m)− 1.  相似文献   

2.
Li3 − xFe2 − xTix(PO4)3/C (x = 0-0.4) cathodes designed with Fe doped by Ti was studied. Both Li3Fe2(PO4)3/C (x = 0) and Li2.8Fe1.8Ti0.2(PO4)3/C (x = 0.2) possess two plateau potentials of Fe3+/Fe2+ couple (around 2.8 V and 2.7 V vs. Li+/Li) upon discharge observed from galvanostatic charge/discharge and cyclic voltammetry. Li2.8Fe1.8Ti0.2(PO4)3/C has higher reversibility and better capacity retention than that of the undoped Li3Fe2(PO4)3/C. A much higher specific capacity of 122.3 mAh/g was obtained at C/20 in the first cycle, approaching the theoretical capacity of 128 mAh/g, and a capacity of 100.1 mAh/g was held at C/2 after the 20th cycle.  相似文献   

3.
Up to 10 at.% of copper readily substitutes for cerium in ceria. It is found that at oxygen partial pressures between 0.21 atm and 10−5 atm, CuxCe1−xO2−δ (0 ≤ x ≤ 0.10) solid solution behave as an oxide-ion electrolyte. Interestingly, Cu0.10Ce0.90O2−δ exhibits the oxide-ion conductivity of ca. 10−4 Ω−1 cm−1 at 600 °C at an oxygen partial pressure of 10−5 atm.  相似文献   

4.
Spinel ferrite Cox(Cu0.5Zn0.5)1−xFe2O4 over a compositional range 0 < x < 1 was prepared using a simple hydrothermal method. Particle sizes could be varied from 14 to 25 nm by changing the x value. X-ray diffraction results confirmed that all the as-prepared nanoparticles revealed typical spinel structure and transmission electron microscopy images showed that the particle size of the samples increased with increasing x value. The magnetic properties of the as-prepared Cox(Cu0.5Zn0.5)1−xFe2O4 nanoparticles have been systematically examined. The maximum saturation magnetization existed at the highest Co content (x = 1). The electromagnetic properties of all the samples have been measured by an Agilent network analyzer and the results showed that Co0.1(Cu0.5Zn0.5)0.9Fe2O4 possessed the best microwave absorbing properties.  相似文献   

5.
Polycrystalline Cd3−xyCuxAyTeO6 (A = Li, Na) samples were prepared by solid-state reaction, and their crystal structure and electrical properties were investigated. In Cd3−xCuxTeO6 and Cd3−yAyTeO6 (A = Li, Na), the maxim solubility of x and y was 0.15 and 0.15 for A = Li, 0.05 for A = Na, respectively. For co-substituted samples Cd2.9−yCu0.1LiyTeO6 and Cd2.9−yCu0.1NayTeO6, the maxim solubility of x was the same as single substitution above-mentioned. The alkali-metal substituted samples Cd3−yAyTeO6 (A = Li, Na) showed a negative Seebeck coefficient, which indicates that the major conduction carriers are electron. On the other hand, the co-substituted samples Cd2.9−yCu0.1AyTeO6 (A = Li, Na) represented a positive Seebeck coefficient, and major conduction carriers were hole through substitution by copper ions.  相似文献   

6.
(La1−xTix)0.67Mg0.33Ni2.75Co0.25 (x = 0, 0.05, 0.10, 0.15 and 0.20, at%) alloys are synthesized by arc-melting and subsequent heat solid-liquid diffusing techniques, and the crystalline structures and electrochemical properties of the alloys are investigated systematically. The structural analysis results show that all the alloys mainly consist of (La, Mg)Ni3 phase with the rhombohedral PuNi3-type structure and LaNi5 phase with the hexagonal CaCu5-type structure. However, when the Ti content is higher than 0.10, a little amount of TiNi3 phase start to form. Electrochemical measurements show that the alloy electrodes could be activated to their maximum discharge capacity within four cycles, the maximum discharge capacity is around 321.9-384.6 mAh g−1, both the cyclic stability and the high-rate discharge ability first increased and then decrease with increasing x. All the results show that a little amount of Ti substitution for La in AB3-type hydrogen storage alloys is effective to the improvement of the overall electrochemical properties.  相似文献   

7.
The phase structure, microwave dielectric properties, and their stability with different annealing conditions have been investigated in (Li1/4Nb3/4) substituted ZrxSnyTizO4 system. The sintering temperature of ZrxSnyTizO4 ceramic was lowered from 1500 to 1140 °C by (Li1/4Nb3/4) substitution. Both X-ray diffraction (XRD) analysis and electron diffraction (ED) analysis revealed that the (Li1/4Nb3/4) substituted ZrxSnyTizO4 ceramic crystallized as the high-temperature disordered ZrTiO4 phase. As the content of Sn increased from 0.10 to 0.30, the permittivity of the (Zr1−xSnx)(Li1/4Nb3/4)0.4Ti0.6O4 ceramic decreased gradually from 35.5 to 31.5, the Qf value increased from 37,800 to 58,300 GHz, and TCF value shifted slightly from −4.5 to −33.0 ppm °C−1. Both the phase structure and microwave dielectric properties of (Zr1−xSnx)(Li1/4Nb3/4)0.4Ti0.6O4 ceramics were stable with annealing conditions.  相似文献   

8.
All-solid-state cells of the configuration (−)Ag + SE//SE//I2-phenothiazine + C(+) using the best conducting compositions of the solid electrolyte systems, namely, Cu1−xAgxI-Ag2O-Y where x = 0.05, 0.1, 0.15, 0.2 and 0.25, Y = MoO3, B2O3, SeO2, V2O5 and CrO3, as the electrolytes were fabricated. Discharge, polarization and power characteristics of these cells were also evaluated. The open circuit voltage values of these cells were in the range 620-635 mV. The stability of these cells has been indicated by the constancy of their OCV over a period of 6 months. The polarization and discharge studies on these cells have shown that typical cells based on the electrolytes with Y = B2O3, SeO2 and V2O5 would possess discharge capacities of 12.84, 3.76 and 5.05 mA h and specific energy of 6.55, 1.81 and 2.77 W h kg−1, respectively. The solid electrolytes have good electrochemical stability and compatibility with the Ag/Phenothiazine-I2 electrode couple thus offering their suitability of application in microwatt power sources.  相似文献   

9.
We report formation of new noncentrosymmetric oxides of the formula, R3Mn1.5CuV0.5O9 for R = Y, Ho, Er, Tm, Yb and Lu, possessing the hexagonal RMnO3 (space group P63cm) structure. These oxides could be regarded as the x = 0.5 members of a general series R3Mn3−3xCu2xVxO9. Investigation of the Lu-Mn-Cu-V-O system reveals the existence of isostructural solid solution series, Lu3Mn3−3xCu2xVxO9 for 0 < x ≤ 0.75. Magnetic and dielectric properties of the oxides are consistent with a random distribution of Mn3+, Cu2+ and V5+ atoms that preserve the noncentrosymmetric RMnO3 structure.  相似文献   

10.
Ba1−ySryLa4−xTbx(WO4)7 (x = 0.02-1.2, y = 0-0.4) phosphors were prepared via a solid-state reaction and their photoluminescence properties were investigated. An analysis of the decay behavior indicates that the energy migration between Tb3+ ions is conspicuous in the 5D3 → 7F4 transition due to the cross-relaxation in BaLa4(WO4)7. A partial substitution of Ba2+ by Sr2+ can not only enhance the emission intensity but also increase the solid solubility of Tb3+ in Ba1−ySryLa4−xTbx(WO4)7. The emission intensity of the 5D4 → 7FJ (J = 4, 5, 6) transitions can be enhanced by increasing Sr2+ and Tb3+ concentrations, with the optimal conditions being x = 1.2, y = 0.4 (Ba0.6Sr0.4La2.8Tb1.2(WO4)7). Under near-UV excitation at 379 nm, the CIE color coordinates of Ba1−ySryLa4−xTbx(WO4)7 vary from blue (0.212, 0.181) at x = 0.04, y = 0, to green (0.245, 0.607) at x = 1.2, y = 0.4.  相似文献   

11.
Li(1−2x)NixTiO(PO4) oxyphosphates with 0 ≤ x ≤ 0.10 crystallize in the orthorhombic system with the space group Pnma, those with 0.10 < x ≤ 0.25 crystallize in the monoclinic system with the space group P21/c and compositions with 0.25 < x < 0.50 present a mixture of the limit of the solid solution Li0.50Ni0.25TiO(PO4) and Ni0.50TiO(PO4). The structure of the compositions 0 ≤ x ≤ 0.25 is based on a three-dimensional anionic framework constructed of chains of alternating TiO6 octahedra and PO4 tetrahedra, with the lithium and nickel atoms in the cavities in the framework. The dominant structural units in the compositions are chains of tilted corner-sharing TiO6 octahedra running parallel to one of the axis. The oxygen atoms of the shared corners, not implied in (PO4) tetrahedra, justify the oxyphosphate designation. Titanium atoms are displaced from the geometrical center of the octahedra resulting in alternating long (≈2.25 Å) and short (≈1.71 Å) TiO(1) bonds. The four remaining TiO bond distances have intermediate values ranging from 1.91 to 2.06 Å.  相似文献   

12.
The quaternary semiconductors Cu2ZnSnSe4 and Cu2ZnSnS4 have attracted a lot of attention as possible absorber materials for solar cells due to their direct bandgap and high absorption coefficient (> 104 cm−1). In this study we investigate the optical properties of Cu2ZnSn(SexS1 − x)4 monograin powders that were synthesized from binary compounds in the liquid phase of potassium iodide (KI) flux materials in evacuated quartz ampoules. Radiative recombination processes in Cu2ZnSn(SexS1 − x)4 monograins were studied by using low-temperature photoluminescence (PL) spectroscopy. A continuous shift from 1.3 eV to 0.95 eV of the PL emission peak position with increasing Se concentration was observed indicating the narrowing of the bandgap of the solid solutions. Recombination mechanisms responsible for the PL emission are discussed. Vibrational properties of Cu2ZnSn(SexS1 − x)4 monograins were studied by using micro-Raman spectroscopy. The frequencies of the optical modes in the given materials were detected and the bimodal behaviour of the A1 Raman modes of Cu2ZnSnSe4 and Cu2ZnSnS4 is established.  相似文献   

13.
The crystal structure, thermal expansion rate, electrical conductivity and electrochemical performance of Sm0.5Sr0.5MxCo1−xO3−δ (M = Fe, Mn) have been investigated. Two crystal structures have been observed in the specimens of Sm0.5Sr0.5FexCo1−xO3−δ (SSFC) at room temperature, the perovskite structure of SSFC has an orthorhombic symmetry for 0 ≤ x ≤ 0.4 and a cubic symmetry for 0.5 ≤ x ≤ 0.9. The specimens of Sm0.5Sr0.5MnxCo1−xO3−δ (SSMC) crystallize in an orthorhombic structure. The adjustment of thermal expansion rate to electrolyte, which is one of the main problems of SSC, can be achieved to lower TEC values with more Fe and Mn substitution. Especially, Sm0.5Sr0.5Mn0.8Co0.2O3−δ exhibits good thermal compatibility with La0.8Sr0.2Ga0.8Mg0.2O3. High electrical conductivities are obtained for all the specimens and they demonstrate above 100 S/cm at 800 °C in SSFC system. The polarization resistance increases with increasing Mn content, Nevertheless, the polarization resistance of SSFC increases with increasing Fe content, but when the amount of Fe reaches to 0.4, the maximum is obtained while the resistance will decrease when the amount of Fe reaches above 0.4. Sm0.5Sr0.5Fe0.8Co0.2O3−δ electrode exhibits high catalytic activity for oxygen reduction operating at temperature from 700 to 800 °C.  相似文献   

14.
Li1.33Ni1/3Co1/3Mn1/3O2 with highly ordered structure has been successfully synthesized via a simple co-precipitation process. Charge–discharge tests showed that the initial discharge capacities are 153.0 mAh g−1 and 128.9 mAh g−1 at 5 C (1000 mA g−1) and 10 C (2000 mA g−1) between 2.5 and 4.5 V, respectively. The average full-charge time of this material is less than 12 min at 5 C and 6 min at 10 C. The electrode material composed of the prepared showed a better cyclability. The excellent high rate performance is attributed to the improved ordered layered structure and the electrical conductivity. The excess Li shorten Li+ diffusion distance between these submicron and nano-scaled particles. The results show that Li1.33Ni1/3Co1/3Mn1/3O2 cathode material has potential application in lithium ion batteries.  相似文献   

15.
Clas Persson 《Thin solid films》2009,517(7):2374-7507
Green's functions modelling of the impurity induced effects in p-type CuIn1 − xGaxS2 and CuIn1 − xGaxSe2 (x = 0.0, 0.5, and 1.0) reveals that: (i) the critical active acceptor concentration for the metal non-metal transition occurs at Nc ≈ 1017-1018 cm− 3 for impurities with ionization energy of EA ≈ 30-60 meV. (ii) For acceptor concentrations NA > Nc, the hole gas of the metallic phase affects the band-edge energies and narrows the energy gap Eg = Eg0 − ΔEg. The energy shift of the valence-band maximum ΔEv1 is roughly twice as large as the shift of the conduction-band minimum ΔEc1. (iii) ΔEv1 depends strongly on the non-parabolicity of the valence bands. (iv) Sulfur based compounds and Ga-rich alloys have the largest shifts of their band edges. (v) A high active acceptor concentrations of NA = 1020 cm− 3 implies a band-gap narrowing in the order of ΔEg ≈ 0.2 eV, thus Eg = Eg0 − 0.2 eV, and an optical band gap of Egopt ≈ Eg0 − 0.1 eV.  相似文献   

16.
The effect of Al2O3 content on the structure, electrical properties, magnetic properties, and interparticle exchange interactions of (Fe65Co35)1 − x(Al2O3)x films with Al2O3 volume fractions x ranging from 0 to 0.50 was systematically investigated. Among the films with x between 0 and 0.25, the lowest coercivity of 0.56 kA/m was achieved in the (Fe65Co35)0.82(Al2O3)0.18 film. This is ascribed to the strongest exchange interactions between the Fe65Co35 nanoparticles in this film. Combined with the microstructure analysis of the (Fe65Co35)1 − x(Al2O3)x films, the modified Herzer's model was extended to interpret the variation of the coercivity with x and analyze the effect of the exchange interactions between the Fe65Co35 nanoparticles on the magnetic softness. The remanence curves confirm the existence of the exchange interactions and reveal the evolution of the exchange interaction strength with Al2O3 content.  相似文献   

17.
The Al doping effects on high-frequency magneto-electric properties of Zn1 − x − yAlxCoyO (x = 0-10.65 at.%) thin films were systematically studied. In the current work, the Zn1 − x − yAlxCoyO thin films were deposited by magnetron co-sputtering onto quartz substrates. The magneto-impedance spectra of the thin films were measured by an impedance analyzer. Among all the doped films studied, the thin film with 6.03 at.% Al-doping showed the highest ac conductivity and relaxation frequency. To characterize the relaxation mechanism underlying the magneto-electric properties, a Cole-Cole impedance model was applied to analyze the impedance spectra. The analyzed result showed that the magneto-impedance of the Zn1 − x − yAlxCoyO is contributed by multiple processes of magnetization dynamics and dielectric relaxation. The results imply that Zn1 − x − yAlxCoyO may be applicable for high-frequency magneto-electric devices.  相似文献   

18.
Li3V2(PO4)3/C is synthesized by an improved rheological phase method using Hydroxy Ethylidene-1,1-Diphosphonic Acid (HEDP) as organic phosphoric sources. The phosphoric sources with carbon chains can inhibit the grain growth of Li3V2(PO4)3 particles. X-ray powder diffraction pattern shows that the obtained Li3V2(PO4)3/C sample is monoclinic phase. Transmission electron microscope results show that the thickness of carbon layer is about 10 nm. The form of residual carbon is confirmed by Raman spectroscopy. The Li3V2(PO4)3/C sample prepared by 1-Hydroxy Ethylidene-1,1-Diphosphonic Acid (HEDP) displays the initial discharge capacity of 158 mAh g− 1 and keeps 130 mAh g− 1 after 100 cycles at 1 C rate. The improved rheological phase reaction method can be used for synthesis of Li3V2(PO4)3 cathode material and other polyanion materials.  相似文献   

19.
In this paper, we present a simple microwave-assisted synthesis of Zn1  xCoxO nanopowders. With the advantages of the microwave-assisted method, we have successfully synthesized good crystalline quality and good surface morphology Zn1  xCoxO nanopowders. The nanopowders are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-VIS absorption, and micro-Raman spectroscopy. We found, in the synthesis process, the surfactant Triethanolamine (TEA) plays an important role on the morphology of Zn1  xCoxO nanoparticles. The XRD study shows that for Co doping up to 5%, Co2+ ions are successfully incorporated into the ZnO host matrix. The absorption spectra of Zn1  xCoxO (x = 1-5%) nanopowders show several peaks at 660, 611 and 565 nm, indicating the presence of Co2+ ions in the tetrahedral sites. The Raman study shows that the linewidth of E2low mode increases with Co concentration, which further indicates the incorporation of Co2+ ions into the ZnO host matrix.  相似文献   

20.
The ferromagnetic metallic oxide, SrRuO3 (TC ∼ 165 K) undergoes structural, magnetic and metal-insulator transitions upon substitution of Cu at the Ru-site. For x = 0.2 in SrRu1−xCuxO3, the structure becomes a tetragonal with the space group I4/mcm and there is a signature of both ferromagnetic (TC = 65 K) and antiferromagnetic (TN = 32 K) ordering due to possible magnetic phase separation. The antiferromagnetism arises due to short range ordering of Cu- and Ru-moments. Jahn-Teller distortion of (Ru,Cu)-O6 octahedra indicates that the copper ions are in 2+ oxidation state with 6t2g3eg electronic configuration. For x ≥ 0.1, narrowing of Ru-4d bandwidth by the substitution of Cu ions results in semiconducting behavior. For x = 0.3, the ac and dc susceptibility measurements indicate a spin glass behavior. The origin of spin glass behavior has been attributed to competing ferromagnetic and antiferromagnetic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号