首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ZnO2 nanoparticles were synthesized via a green hydrothermal method using ZnO powder and 30% H2O2 aqueous solution as the starting materials, and characterized by X-ray diffraction (XRD), Raman spectra, energy dispersive X-ray (EDX) spectra, field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and room temperature photoluminescence (RTPL) spectra. It was found that suitable reaction temperature (e.g., 80-140 °C) played an important role in obtaining pure cubic phase ZnO2 nanoparticles. The RTPL spectra disclosed that the as-synthesized ZnO2 nanoparticles exhibit one strong emission band centered at around 400 nm and one very weak emission band at around 474 nm, which may have originated from the band edge emission and the oxygen vacancy, respectively.  相似文献   

2.
A green hydrothermal method was proposed for the controllable synthesis of ZnO2 nanocrystals and ZnO nanorods, using the common and cost-effective 2ZnCO3·3Zn(OH)2 powder and 30 mass% H2O2 aqueous solution as the raw materials. The characterization results from X-ray diffraction, high resolution transmission electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy indicated that the products synthesized at 100-120 °C for 6 h or at 170 °C for 0 h were cubic phase ZnO2 nanocrystals; while those synthesized at 170 °C for 3-6 h were hexagonal phase ZnO nanorods. The UV-vis absorption spectra showed that the as-synthesized ZnO2 nanocrystals and ZnO nanorods had optical band gaps of about 4.1 and 3.3 eV, respectively.  相似文献   

3.
Crystals of Co3O4 have been prepared from thermal decomposition of molecular precursors derived from salicylic acid and cobalt (II) acetate or chloride at 500 °C. A cubic phase Co3O4 micro- and nanocrystals have been obtained. The as-synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The images of electron microscopes showed octahedral crystals of Co3O4. The volume and polarizability of the optimized structures of molecular precursors have been calculated and related to the particle size. The optical band gap of the obtained crystals has been measured. The results indicated two optical band gaps with values 2.65 and 2.95 eV for (Eg1) (Eg2), respectively.  相似文献   

4.
In this research, a highly efficient and rapid approach of synthesizing Bi2O3 short nanorods is reported in aqueous solutions using microwave irradiation of bismuth (III) nitrate in the presence of Polyvinylpyrrolidone (PVP), as a stabilizing polymer. Transmission electron and field-emission scanning electron microscope images clearly indicate the formation of short nanorods in 6 min under microwave irradiation. Conventional heat treatment route yields only Bi2O3 powder and it is also comparatively complicated and needs high manufacturing cost. Formation of such short Bi2O3 nanorods may be due to the formation of a polymer-metal complex with the stabilizing polymer (PVP).  相似文献   

5.
An alternative two-step method has been proposed for the synthesis of Bi2O3 nanowires with a diameter of about 40 nm from common and cost-effective Bi(NO3)3·5H2O, Na2SO4, and NaOH. That is, first, Bi2O(OH)SO4 nanowires were prepared through the precipitation reaction of Bi(NO3)3·5H2O and Na2SO4 in distilled water under the ambient condition and second, monoclinic phase Bi2O3 nanowires were prepared via the hydrothermal reaction of Bi2O(OH)SO4 and NaOH at 120 °C for 12 h. The resultant products were characterized by X-ray diffraction, field emission scanning electron microscope, and high resolution transmission electron microscopy. In addition, the photocatalytic studies indicated that the as-synthesized Bi2O3 nanowires were a kind of promising photocatalyst in remediation of water polluted by some chemically stable azo dyes.  相似文献   

6.
α-Al2O3 nanowires, with diameter around 10 nm, were synthesized in bulk quantity by heating the mixture of pure aluminum and graphite powders at 900 °C. Scarcity of oxygen is regarded as the reason for the growth of the small diameter α-Al2O3 nanowires at relatively low temperature. The product was characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy and photoluminescence. The Oxygen vacancies in the nanowires lead to the strong photoluminescence in the wavelength range of 400-700 nm with its peak at 527 nm.  相似文献   

7.
The synthesis of copper bismuth oxide (CuBi2O4) nanorods with single crystal structure by hydrothermal method is first reported here. The prepared CuBi2O4 nanorods are characterized by X-ray diffractometer, scanning electron microscopy, transmission electron microscopy (TEM) and high resolution TEM. It is found that the concentration of reagent cupric acetate has strong effect on the purity and microstructure of the prepared samples. The growth process is investigated in detail. It is proposed that the nanorods are evolved from spherical particles with oriented attachment mechanism followed by dissolution-splitting process. The optical properties of the samples are detected by UV-vis spectrometer and photoluminescence spectrometer and exhibit strong dependence on surface defect states and microstructure feature, which is mainly determined by preparation conditions.  相似文献   

8.
Mn3O4 nanoparticles were prepared by a simple solid state decomposition method. Four manganese benzoic acid complexes were synthesized through semi-solid phase reaction method as precursors for the preparation of Mn3O4 nanoparticles. The calcination temperature of the precursors was determined from thermal gravimetrical analyses (TGA). The resulting nanoparticles were characterized by XRD, SEM, STM and HRTEM. The obtained particle size is in the range 39–90 nm. HRTEM indicated the formation of spherical nanoparticles. The optical absorption measurements for the obtained nanoparticles showed that the fundamental absorption edge obeys Tauc's relation for the allowed direct transition. It was found that, the optical band gap (Eg) increases with the decrease of the particle size of the Mn3O4 nanoparticles.  相似文献   

9.
Choosing low-melting-point Ca(NO3)2·4H2O and high-reactive-activity TiO2 nanocrystals as the raw materials, a simple and cost-effective route was developed for the synthesis of CaTiO3 nanoparticles at 600 °C, which is much lower than that (about 1350 °C) used in the conventional solid state reaction methods. X-ray diffraction, energy dispersive X-ray spectroscopy and field emission scanning electron microscopy revealed the formation of orthorhombic phase CaTiO3 nanoparticles with oxygen-deficiency at the surface. UV-vis absorption spectrum of the as-obtained CaTiO3 nanoparticles displayed an absorption peak centered at around 325 nm (3.8 eV), together with a tail at lower energy side. Room temperature photoluminescence spectrum of the as-obtained CaTiO3 nanoparticles upon laser excitation at 325 nm demonstrated a strong and broad visible light emission ranging from about 527 to 568 nm, which may be originated from the surface states and defect levels.  相似文献   

10.
Yan Liu  Ming Zhang 《Materials Letters》2010,64(16):1779-1781
A green hydrothermal method has been developed for the synthesis of CdO2 nanoparticles from Cd(OH)2 powder and 6 vol.% H2O2 aqueous solution at 80-150 °C. The characterization results from X-ray diffraction, transmission electron microscopy, and thermal gravimetric and differential scanning calorimetry analysis disclosed that the resultant products were pure cubic phase CdO2 nanoparticles with the sizes in the range of about 11-13 nm. The UV-vis absorption spectra revealed that the as-synthesized CdO2 nanoparticles had similar optical band gaps of about 3.85 eV. The Raman spectra of the as-synthesized CdO2 nanoparticles displayed two obvious peaks at about 348 and 830/833 cm-1, a characteristic of pyrite-type IIB-peroxides.  相似文献   

11.
Without the use of any extra surfactant or template, hexagonal phase ZnO crystallites consisting of individual nanorods or nanorod assemblies were synthesized simply by solvothermal treatment of several nanometer ZnO2 nanoparticles in three different solvents (including ethanol, 80 wt.% hydrazine hydrate aqueous solution and ethylenediamine) at 150 °C for 24 h. The structures and optical properties of the resultant products were characterized by means of X-ray powder diffraction (XRD), scanning electron microscope (SEM), and room temperature photoluminescence (RTPL) spectra. The RTPL spectra of the resultant products all showed a much stronger ultraviolet bandgap emission peaking at around 387 nm and a weaker emission associated with the defect level. The as-synthesized ZnO crystallites are promising materials for the optoelectronic devices due to their excellent UV emission properties.  相似文献   

12.
Third-order nonlinear optical responses of nanoparticulate Co3O4 films, prepared by sputtering and pyrolysis, were investigated. The sputtered Co3O4 film showed a large third-order nonlinear susceptibility (|χ(3)|) of 3.2×10−8 esu, determined by degenerate four-wave mixing (DFWM). This |χ(3)| is 7.1 times greater than that of the pyrolyzed Co3O4 film, attributable to the greater density and refractive index of the sputtered film. Time-resolved DFWM experiments show a slowly decaying component with a lifetime of approximately 100 ps existing for both films in addition to a fast decaying component. Nonlinear transmission experiments revealed both films exhibiting significant nonlinear absorption. The imaginary part of the susceptibility (Im[χ(3)]) found for each film was of the same order of magnitude as the |χ(3)| found by the DFWM method, showing that the major part of the fast decaying component of |χ(3)| comes from the nonlinear absorption.  相似文献   

13.
M. Lei 《Materials Letters》2009,63(22):1928-1930
Zinc gallate (ZnGa2O4) nanowires were directly grown on the amorphous carbon-coated silicon substrates using a facile chemical vapor deposition method without any metal catalysts. The growth mechanism can be attributed to a self-organization vapor-liquid-solid (VLS) process. The amorphous carbon layer plays an important role in the nucleation and growth process of the ZnGa2O4 nanowires. The photoluminescence (PL) of the nanowires shows a broad, strong green emission band centered at 532 nm and a weak UV emission band at 381 nm, which can be attributed to a large amount of ionized oxygen vacancies and the combination of Ga3+ ions with free electrons in coordinated oxygen vacancies, respectively.  相似文献   

14.
Precursors of Co3O4 and Ag/Co3O4 composites with sheet-like shape were synthesized with assistance of ethylene glycol via a solvothermal process. The final samples were obtained by calcining each precursor at 400 °C. The as-prepared samples were identified and characterized by thermogravimetric analysis (TG) and differential thermal gravimetric (DTG) analysis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM). The Co3O4 and Ag/Co3O4 composite nanosheets were used as electrocatalysts modified on a glassy carbon electrode for p-nitrophenol and H2O2 reduction respectively in a basic solution. The electrocatalytic results showed that p-nitrophenol could be reduced by pure Co3O4 at a large peak current but a rather higher peak potential, and could be reduced effectively by Ag/Co3O4 composites at lower potential. Ag/Co3O4 composites with 6% Ag displayed the highest electrocatalytic activity for H2O2 reduction at the largest peak current and a lower peak potential. The reduction peak potentials of H2O2 all reduced a great deal using Ag/Co3O4 composite.  相似文献   

15.
Wei Zhao 《Materials Letters》2009,63(2):285-288
In this work, hierarchical PbWO4 spheres assembled by nanorods were successfully synthesized through a tri-potassium citrate assisted hydrothermal process. The samples were studied by powder X-ray diffraction pattern (XRD), field scanning electron microscopy (SEM), and transmission electron microscopy (TEM). It was found that citrate played a key role on the morphology of PbWO4 products. By adjusting concentration of citrate, PbWO4 octahedrons, hierarchical spheres, hierarchical ellipses could be obtained. Based on time-dependent experiments, we found the growth of the hierarchical spheres followed a self-assembly process. The most interesting part was that the hierarchical spheres/ellipses showed a blue emission peak at 440 nm, which differs from the typical green one at 500 nm as reported.  相似文献   

16.
We have used a Flame Spray Pyrolysis (FSP) technique to synthesize lutetium oxide (Lu2O3) nanoparticles from lutetium nitrate. Optical quality transparent ceramics were prepared via hot pressing of the Lu2O3 nanoparticles formed using the FSP technique. We present data demonstrating that the FSP system can be used to control the material phase of the nanoparticles by changing the O2 dispersion gas flow rate. Different O2 dispersion gas flow rates affect the particle residence time in the flame resulting in the formation of different nanoparticulate phases. Our work has led to the synthesis of a metastable phase of Lu2O3 which has never been reported using the FSP technique. Significantly, the presence of the metastable phase enables the ceramic powders to be hot pressed at lower temperatures resulting in smaller grain sizes, resulting in excellent optical quality Lu2O3 windows.  相似文献   

17.
Pure hexagonal ZnO nanorods were synthesized by low-temperature (90 °C) solvothermal treatment of zinc acetate in 40-80 wt.% hydrazine hydrate aqueous solutions. The products were characterized by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electronic microscopy (TEM), selected area electron diffraction (SAED), and room temperature photoluminescence (RTPL) spectra. They show a strong UV emission at around 380 nm upon excitation at 360 nm using a Xe lamp at room temperature. The influence on the quality of the nanorods was investigated while the content of the solvent changed. The as-synthesized ZnO nanorods are promising materials for nanoscale optoelectronic devices due to their excellent UV emission properties.  相似文献   

18.
We report on a feasible method to synthesize luminescence nanocrystals in porous glass in this paper. Well dispersed YVO4:Eu nanocrystals were proved being grown in nanoporous glass by XRD, micro-Raman spectra and HRTEM equipped with EDS. The YVO4:Eu3+ nanocrystal grown in porous glass herein shows very different luminescence properties compared with single Eu-doped sample. By this method, intense red emission from high silica glass due to energy transfers VO43− → Eu3+ was obtained. The results show that the reduction from Eu3+ to Eu2+ in porous glass impregnated with Eu3+ ions was avoided effectively.  相似文献   

19.
Cobalt oxalate nanorods have been successfully synthesized by a simple microwave-assisted solution approach using an ionic liquid 1-n-butyl-3-methyl imidazolium tetrafluoroborate. Upon thermal decomposition at 400 °C, cobalt oxalate nanorods could be converted to Co3O4 rods consisting of nanoparticles. The products were characterized using X-ray powder diffraction, transmission electron microscopy, thermogravimetric analysis and differential scanning calorimetric analysis.  相似文献   

20.
M. Lei 《Materials Letters》2010,64(1):19-5786
We report a facile thermal evaporation method for the syntheses of Al-doped SnO2 nanowires using Al-doped SnO2 nanoparticles as precursors. High-density, single-crystalline Al-doped SnO2 nanowires were directly grown on the 6H-SiC substrates without any catalyst. X-ray diffraction patterns show that the Al dopants are incorporated into the rutile SnO2 nanowires. The X-ray photoelectron spectra confirm the SnO2 nanowires doped with 5 at.% Al. The photoluminescence spectra of the Al-doped SnO2 nanowires exhibit that the large blue shift of the emission band can be observed in the Al-doped SnO2 nanowires compared with undoped nanowires. The distortion of the crystal lattices caused by incorporation of Al atoms at the interstitials should be responsible for the large blue shift of the emission band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号