共查询到15条相似文献,搜索用时 78 毫秒
1.
针对二进制人工蜂群算法收敛速度慢、易陷入局部最优的缺点,提出一种改进的二进制人工蜂群算法。新算法对人工蜂群算法中的邻域搜索公式进行了重新设计,并通过Bayes公式来决定食物源的取值概率。将改进后的算法应用于求解多维背包问题,在求解过程中利用贪婪算法对进化过程中的不可行解进行修复,对背包资源利用不足的可行解进行修正。通过对典型多维背包问题的仿真实验,表明了本文算法在解决多维背包问题上的可行性和有效性。 相似文献
2.
3.
由于人工蜂群(artificial bee colony,ABC)算法存在收敛速度慢、易陷入局部最优的缺点,采用设置自适应缩放因子和基于适应度排序的选择方式代替传统的轮盘赌模型,提出了一种改进的快速人工蜂群算法(fast artificial bee colony,FABC).基于这种FABC算法对4个离散变量的几何优化模型进行了优化,并与遗传算法(GA)、蚁群算法(ACA)、启发式粒子群优化算法(HPSO)和群搜索算法(GSO)作了比较.结果表明,这种改进的人工蜂群算法具有较好的收敛精度.另外,ABC算法以及FABC算法结构简单,可应用在其他优化问题上. 相似文献
4.
5.
6.
基于桥梁节段模型风洞试验自由振动衰减时程信号,提出了桥梁断面颤振导数识别的人工蜂群算法。基于最小二乘原理,将竖弯和扭转信号的整体残差平方和作为目标函数,使用人工蜂群算法对相关参数进行寻优搜索,识别出桥梁断面的颤振导数。与其他迭代算法相比,人工蜂群算法是受生物启发产生的寻优算法,对初值没有要求,从而避免了迭代初值对识别精度的影响。为考察人工蜂群算法在桥梁断面颤振导数识别中的有效性,进行了理想平板模型仿真以及某大桥节段模型风洞试验,结果表明,桥梁断面颤振导数识别的人工蜂群算法具有较好的稳定性和可靠性。 相似文献
7.
8.
将扩展有限元法与智能优化算法相结合,基于结构的实际响应值反演出结构内部缺陷信息。传统人工蜂群算法在一定程度上朝着任意的方向搜索,为了避免出现搜索的局部最优现象,该文在传统人工蜂群算法中嵌入了加权平均数突变和交叉算子,将这种改进算法用于单个圆形、椭圆形缺陷和两个不规则缺陷的反演分析,并研究了该算法在测得值有误差情况下的适应性。研究得到:这种改进人工蜂群算法能准确反演出结构的真实缺陷信息;改进人工蜂群算法相比于传统人工蜂群算法收敛速度更快且不易出现局部最优,且定位准确,鲁棒性较强。 相似文献
9.
10.
为提高溶解氧含量预测的精度,提出一种基于添加自适应白噪声的完备集成经验模态分解法(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)和人工蜂群算法(Artificial Bee Colony,ABC)改进长短时记忆网络(... 相似文献
11.
In this study the layer optimization was carried out for maximizing the lowest (first) fundamental frequency of symmetrical laminated composite plates subjected to any combination of the three classical boundary conditions, and the applicability of the Artificial Bee Colony (ABC) algorithm to the layer optimization was investigated. The finite element method was used for calculating the first natural frequencies of the laminated composite plates with various stacking sequences. The ABC algorithm maximizes the first natural frequency of the laminated composite plate defined as an objective function. The optimal stacking sequences were determined for two layer numbers, twenty boundary conditions and two plate length/width ratios. The outer layers of the composite plate had a stiffness increasing effect, and as the number of clamped plate edges was increased both he stiffness and natural frequency of the plate increased. The optimal stacking sequences were in good agreement with those determined by the Ritz-based layerwise optimization method (Narita 2003: J. Sound Vibration 263 (5), 1005–1016) as well as by the genetic algorithm method combined with the finite element method. 相似文献
12.
目的为了改善等压灌装阀的灌装性能,分析阀口流道结构参数对液料流场的影响,求解流道内最大压力损失、最大液料流速和最大湍动能均最小化的约束多目标优化问题。方法基于正交试验设计和Fluent流场仿真软件对灌装阀阀口流道流场进行数值模拟,并通过回归分析建立以阀口流道结构参数为自变量的最大压力损失、最大液料流速和最大湍动能的经验方程,进而建立阀口流道结构参数约束多目标优化模型,采用约束多目标人工蜂群算法对优化模型进行求解。结果流道内最大压力损失最小化、最大液料流速最小化和最大湍动能最小化这3个目标之间存在冲突,无法同时达到最优,基于多目标人工蜂群算法获得了阀口流道结构参数的最优Pareto解集。结论约束多目标人工蜂群算法能有效用于等压灌装阀阀口流道结构参数的优化。 相似文献
13.
Ayat Alrosan Waleed Alomoush Mohammed Alswaitti Khalid Alissa Shahnorbanun Sahran Sharif Naser Makhadmeh Kamal Alieyan 《计算机、材料和连续体(英文)》2021,68(2):1575-1593
Fuzzy C-means (FCM) is a clustering method that falls under unsupervised machine learning. The main issues plaguing this clustering algorithm are the number of the unknown clusters within a particular dataset and initialization sensitivity of cluster centres. Artificial Bee Colony (ABC) is a type of swarm algorithm that strives to improve the members’ solution quality as an iterative process with the utilization of particular kinds of randomness. However, ABC has some weaknesses, such as balancing exploration and exploitation. To improve the exploration process within the ABC algorithm, the mean artificial bee colony (MeanABC) by its modified search equation that depends on solutions of mean previous and global best is used. Furthermore, to solve the main issues of FCM, Automatic clustering algorithm was proposed based on the mean artificial bee colony called (AC-MeanABC). It uses the MeanABC capability of balancing between exploration and exploitation and its capacity to explore the positive and negative directions in search space to find the best value of clusters number and centroids value. A few benchmark datasets and a set of natural images were used to evaluate the effectiveness of AC-MeanABC. The experimental findings are encouraging and indicate considerable improvements compared to other state-of-the-art approaches in the same domain. 相似文献
14.
提出了一种基于自适应差分进化人工蜂群优化极限学习机预测血液各组分浓度的方法。首先应用人工蜂群算法对输入权值和隐含层阈值迭代寻优;其次结合差分进化进一步提高模型精度且避免后期易陷入局部最优等问题;由于差分进化算法交叉率和变异率存在凭经验给定的不确定性,最后引入了自适应调整的思想提出自适应差分进化人工蜂群算法优化极限学习机算法的模型,将其应用于血液成分定量分析中。实验表明,自适应差分进化人工蜂群算法优化的极限学习机模型具有较高的预测精度,模型具有较强的稳健性。 相似文献
15.
用混合型蚂蚁群算法求解TSP问题 总被引:8,自引:0,他引:8
介绍了求解TSP问题的混合型蚂蚁群算法,并以att532(美国532个城市)为例给出了计算实验结果,说明了混合型蚂蚁群算法能改进标准蚂蚁群算法的计算效率和计算结果的质量。 相似文献