首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
环氧树脂/酸酐固化体系的固化动力学及耐热性研究   总被引:6,自引:0,他引:6  
通过不同升温速率下的DSC研究了环氧树脂/酸酐固化体系的固化动力学.利用DSC、DMA和TGA研究了固化体系的耐热性能.通过分析确定了体系的固化工艺,采用Kissinger、Ozawa法计算出固化体系的表观活化能.其均值为62.00 kJ/mol,结合Crane公式求出反应级数为0.92.采用DSC法测得玻璃化转变温度Tg=183℃.采用DMA法测得玻璃化转变温度Tg=182℃.热失重曲线表明,固化体系的起始分解温度为350℃.  相似文献   

2.
制备了水性酚醛/环氧树脂(PFR/ER),采用红外光谱(FTIR)、示差扫描量热仪(DSC)、动态力学谱仪(DMA)研究了其非等温固化动力学,测试了玻璃化转变温度(T g)和涂膜的物理力学性能。结果表明,叔胺NN二甲基苄胺可作为该体系固化催化剂,使固化平均表观活化能E a由80.83 kJ/mol降为77.61 kJ/mol;静态固化起始温度T ci、峰顶温度T cp和终了温度T cf分别降低了11,30和53℃左右。非等温固化过程可以ˇSesták-Berggre(S-B)模型描述。材料的T g随着酚醛树脂含量增加呈升高趋势,当酚醛与环氧的质量比为1∶1时,T g达到151.1℃。涂膜铅笔硬度3H以上,附着力1级,耐冲击性25 N以上。  相似文献   

3.
耐高温树脂的固化动力学分析及其力学性能   总被引:1,自引:3,他引:1  
本文对一种耐高温环氧树脂体系进行了固化动力学研究,计算出该树脂体系的活化能为70.62kJ/mol、反应级数为0.93,并得到该体系的反应速率常数方程和动力学方程式,确定了树脂体系的固化工艺。还制备了T700碳纤维单向板,并对其力学性能进行测试。结果表明,该树脂体系具有优良的耐热性(树脂固化物的Tg达到218℃)、反应活性高,适用于快速成型固化工艺,其复合材料具有良好的力学性能。  相似文献   

4.
耐高温尼龙在汽车、电子电器等领域具有广泛的应用,但目前高端耐高温尼龙被国外尼龙生产巨头所控制,国内主要依赖进口。本文在总结国内外耐高温尼龙的种类,主要制备工艺,改性和应用研究进展。重点分析了耐高温尼龙的合成工艺和功能化改性方向,并指出开发新工艺,寻找新原料,合理调控耐热性能是目前国内企业的主要发展方向。  相似文献   

5.
以BA9913树脂的全动态DSC扫描实验为基础,结合半经验的唯象模型获得了基于唯象模型的高韧性环氧(牌号:BA9913)树脂的固化动力学参数,建立相应的动力学模型,并测定了BA9913树脂在100℃时保温不同时间后的凝胶固化度。利用Di Benedetto方程研究了该等温条件下BA9913树脂固化度与加热时间的关系,得到其玻璃化转变温度与固化时间的关系表达式。采用测凝胶储能模量的方法得到了BA9913树脂凝胶时的固化度和玻璃化转变温度之间的关系,绘制了BA9913树脂的TTT图。在此基础上对T300/BA9913的固化工艺进行了优化,并研究了优化前后T300/BA9913复合材料的内部质量、基本力学性能及玻璃化转变温度。  相似文献   

6.
综述了耐高温EP(环氧树脂)的研究进展,主要集中在新型EP基体或固化剂的开发、EP与耐热聚合物[如超支化聚合物、聚氨酯(PU)、聚酰亚胺(PI)、双马来酰亚胺(BMI)、聚醚酮、聚砜和聚酯等]、填料(有机纳米黏土、纳米氧化铝和纳米橡胶粉等)的共混及共聚等方面。最后对EP耐高温改性的发展方向进行了展望。  相似文献   

7.
8.
王珂  虞鑫海  徐永芬 《粘接》2013,(2):63-65
对耐高温环氧树脂胶粘剂的研究进展进行了综述,分析了环氧树脂胶粘剂耐高温性的影响因素及提高环氧胶粘剂耐高温性的途径。重点阐述了几种提高环氧树脂胶粘剂耐温性的新方法,对其发展前景进行了展望。  相似文献   

9.
耐高温及阻燃环氧树脂改性的研究进展   总被引:4,自引:0,他引:4  
综述了近年来耐高温及阻燃环氧树脂改性的研究进展。目前对环氧树脂耐高温和阻燃方面的改性方法主要有硅改性,磷改性,硅、磷、胺协同改性,刚性棒状改性,芳杂环和脂环族改性,马来酰亚胺改性,氰酸酯改性,内消旋改性和有机钛改性等方法。  相似文献   

10.
耐高温环氧树脂胶粘剂研究进展   总被引:10,自引:2,他引:8  
介绍了近年来耐热环氧树脂胶粘剂的研究概况 ,讨论了影响环氧树脂胶粘剂耐热性的因素 ,并指出了耐热环氧树脂胶粘剂的研究发展方向。  相似文献   

11.
武杨  巫辉  原晔 《中国胶粘剂》2014,(10):55-58
介绍了耐高温环氧树脂(EP)胶粘剂中无机填料、热塑性树脂、酚醛树脂(PF)、纳米粒子和结构调整等EP改性方法的研究进展,特别对双马来酰亚胺(BMI)改性EP及有机硅改性EP进行了综述。最后对耐高温EP胶粘剂的发展前景进行了展望。  相似文献   

12.
纳米粒子改性环氧树脂玻璃化转变温度的研究   总被引:2,自引:1,他引:1  
采用示差扫描量热分析(DSC)研究了纳米A l2O3粒子改性的环氧树脂基体玻璃化转变温度与纳米粒子含量之间的关系以及纳米粒子含量对改性体系固化剂用量的影响。结果表明,随着纳米粒子含量的提高,改性树脂的玻璃化转变温度逐渐下降,由纯树脂的224℃下降到182.5℃(纳米粒子用量30%,固化剂添加量70%)。并且纳米粒子的加入会影响树脂基体的固化反应。达到玻璃化转变温度峰值时的固化剂用量并非按照改性体系中环氧树脂含量等当量比加入,而是与纳米粒子含量有关,纳米粒子含量越高,达到玻璃化转变温度峰值时固化剂用量越少。  相似文献   

13.
郭翔  虞鑫海  刘万章 《粘接》2014,(9):56-60
基于TGDDM环氧树脂和DDRS多官能环氧树脂,制得了3种耐高温环氧胶粘剂(J-1,J-2,J-3),并对其不同温度下的粘接强度进行了研究。研究结果表明,其200℃的拉伸剪切强度为15.6~18.6 MPa,耐热性能良好。采用J-3耐高温环氧胶粘剂为样品,利用DSC对其进行了固化动力学研究,采用Kissinger法计算出该环氧胶粘剂的表观活化能第1个峰Ea=69.8kJ/mol,第2个峰Ea=73.2kJ/mol;结合Crane公式求出该体系第1个峰的反应级数n=0.82,第2个峰的反应级数n=1.07。  相似文献   

14.
将预先混合好固化剂的环氧树脂(EP)通过双螺杆挤出机均匀地加入到可水解交联的硅烷接枝聚乙烯(XPE)中,并采用聚乙烯接枝马来酸酐(PE-g-MAH)作为增容剂,制备了EP增强的XPE(XPE/EP)电缆材料.研究了EP的增强作用以及与XPE的相容性.结果表明,PE-g-MAH的加入可以明显改善XPE/EP电缆材料的界面相互作用,从而提高其力学性能,扩展其使用范围和应用领域.  相似文献   

15.
韩凤志  李东临 《广东化工》2014,(8):94-95,92
耐高温胶黏剂广泛应用于航空航天、汽车、电子电器等领域,其中环氧树脂胶黏剂具有成本低廉、粘接强度高、综合性能好等优点,经常被作为耐高温胶黏剂的基体,但是固化后的环氧树脂存在耐热性不高等缺点,限制了它的广泛使用。为此,文章介绍了近年来通过无机填料、热塑性树脂、橡胶等方法改性环氧树脂制备耐高温环氧胶黏剂的研究成果,并对其发展前景进行展望。  相似文献   

16.
毛建  王钧  段华军 《热固性树脂》2006,21(1):16-17,20
为了研究多官能度环氧树脂(AFG-90)对环氧树脂共混体系耐热性能的影响,通过动态机械分析仪测试了其不同加入量的共混树脂固化物的玻璃化转变温度(Tg)。结果表明:AFG-90和普通环氧树脂有很好的相容性,其固化物的Tg随AFG-90加入量的增加而增加,并表现出1个最佳值范围;而固化物的初始模量基本保持不变。  相似文献   

17.
杨永红  冯剑 《化学与粘合》2022,44(2):142-146
环氧树脂液体胶粘剂存在不耐高温的问题.以环氧树脂为基料,通过加入聚芳醚腈、碳硼烷以及聚氨酯等三种不同的改性物质,制成三种不同类型的环氧树脂液体胶粘剂,并针对这三种胶粘剂,分析环氧树脂液体胶粘剂耐高温性能.结果表明:通过高温下热重测试,碳硼烷-环氧树脂胶粘剂的表观分解温度和温度指数最高,分别为850.3℃和23.54℃,...  相似文献   

18.
等温和非等温DSC是研究环氧树脂固化动力学的有效方法,本文综述了采用DSC法研究环氧树脂固化动力学方法(模型拟合法和非模型法)的研究进展,介绍了环氧树脂动力学研究在不同环氧树脂体系中的应用,并展望了动力学研究的发展方向.  相似文献   

19.
室温固化耐高温环氧树脂胶粘剂的研究进展   总被引:1,自引:0,他引:1  
查尚文  李福志  管蓉 《粘接》2011,(10):76-79
环氧树脂(EP)胶粘剂具有优异的粘接性能和化学稳定性因而获得广泛应用,现代工业的发展要求EP胶粘剂兼具室温固化和耐受高温的能力.本文对室温固化耐高温EP胶粘剂的研究进展进行综述,介绍了近年来国内外部分性能优良的EP胶粘剂,并对其发展前景进行展望.  相似文献   

20.
以BMI(双马来酰亚胺)作为改性剂、DDM(4,4’-二氨基二苯甲烷)作为固化剂,制备耐高温EP(环氧树脂)胶粘剂。研究结果表明:采用正交试验法优选出制备BMI/EP/DDM胶粘剂的最优方案为m(EP)∶m(DDM)=1∶1.00、m(BMI)∶m(EP)=0.4∶1、混合搅拌时间为30 min和搅拌转速为300 r/min;采用非等温DSC(差示扫描量热)法和T-β(温度-升温速率)外推法,确定了该胶粘剂的固化工艺条件为"60℃处理3 h→88℃处理2 h→112℃处理2 h→121℃处理2 h";经BMI改性后,耐高温EP胶粘剂的耐热性和力学性能均有所提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号