共查询到18条相似文献,搜索用时 62 毫秒
1.
针对视频行人重识别任务中存在的行人外观、遮挡等问题,研究并设计了一个基于金字塔分割和注意力机制的视频行人重识别模型。首先,为了增强图模型对行人局部特征的识别能力,提出了多个尺度的水平金字塔分割方法,将各特征分别分割成不同大小的区域,并池化成统一尺寸后输入图模型。另外,鉴于简单的时空注意模块容易因遮挡破坏行人特征,因此使用时空相关注意力方法改进时空注意模块,逐步学习并聚合空间局部信息,同时在时序上相互作用,抑制行人干扰特征并增强判别特征。将模型在Mars和DukeMTMC-VideoReID两个数据集上进行了评估,实验结果证实了文中提出方法的有效性。 相似文献
2.
行人属性识别是计算机视觉领域中的研究热点,在人工智能、安防监控等方面有着极其广泛的应用.传统的行人属性识别方法主要基于底层特征提取,如局部描述符、颜色直方图和人体关键点检测等,但难以解决图像分辨率低和行人被遮挡等原因造成的识别率低下的问题.近年来,随着深度学习在行人属性识别算法中的应用,基于常规网络、部件识别、注意力机... 相似文献
3.
基于图像智能识别技术的远程视频监控系统 总被引:4,自引:0,他引:4
数字图像处理技术和模式识别技术的发展以及它们与视频监控技术的融合,给视频监控领域带来了许多新的方法和思路,也使得无人智能监控成为可能。成功设计的以网络硬盘录像机为核心的远程视频监控系统,在同时引入了数字图像智能识别技术,可以通过分析被监控现场的实时图像资料准确判断出被监控现场的异常状况,并根据相应模式进行有效处理,从而完全实现无人智能监控。 相似文献
4.
行人重识别(Re-ID)旨在跨像机检索同一目标行人,它是智能视频监控领域的一项关键技术.由于监控场景的复杂性,单模态行人重识别在低光、雾天等极端情况下的适用性较差.因实际应用的需要以及深度学习的快速发展,基于深度学习的多模态行人重识别受到了广泛的关注.本文针对近年来多模态行人重识别的发展脉络进行综述:阐述了传统单模态行人重识别方法存在的不足;归纳了多模态行人重识别的常见应用场景及其优势,以及各数据集的构成;重点分析了各种场景下多模态行人重识别的相关方法及其分类,并探讨了当前研究的热点和挑战;最后,讨论了多模态行人重识别的未来发展趋势及其潜在应用价值. 相似文献
5.
人体行为识别一直是计算机视觉研究中的热点.随着近几年人体行为识别在虚拟现实、短视频等方面的广泛应用,以及深度学习算法的快速发展,基于深度学习的行为识别算法层出不穷.相较于传统方法,基于深度学习的行为识别算法具有鲁棒性强、准确率高的优点.基于此,本文对近年来提出的基于深度学习的行为识别算法进行了梳理,并对由双流卷积网络和... 相似文献
6.
人体行为识别一直是计算机视觉研究中的热点.随着近几年人体行为识别在虚拟现实、短视频等方面的广泛应用, 以及深度学习算法的快速发展, 基于深度学习的行为识别算法层出不穷.相较于传统方法, 基于深度学习的行为识别算法具有鲁棒性强、准确率高的优点.基于此, 本文对近年来提出的基于深度学习的行为识别算法进行了梳理, 并对由双流卷积网络和3D卷积网络结构发展而来的行为识别的系列算法进行了重点介绍, 并总结了各种算法的性能和成果, 最后对该领域进行了展望. 相似文献
7.
数字图像处理技术和模式识别技术的发展以及它们与视频监控技术的融合,给视频监控领域带来了许多新的方法和思路,也使得无人智能监控成为可能。成功设计的以网络硬盘录像机为核心的远程视频监控系统,在同时引入了数字图像智能识别技术,可以通过分析被监控现场的实时图像资料准确判断出被监控现场的异常状况,并根据相应模式进行有效处理,从而完全实现无人智能监控。 相似文献
8.
监控视频识别技术,指的是人们利用计算机分析和理解视频监控画面的技术,通过这项技术的发展和应用,能够更好的对车型进行识别,有利于社会的发展和进步。在智能交通系统当中,基于监控视频的车型识别技术具有十分重要的作用,对于我国交通事业的发展具有十分良好的意义。 相似文献
9.
袁海娣 《山东轻工业学院学报》2020,34(3)
针对井下照明情况复杂、光线不均匀、背景复杂、行人特征不明显导致基于计算机图形识别的井下行人检测效果不佳这一问题,提出一种基于改进Cascade R-CNN的井下行人检测方法,以Cascade R-CNN为基础,引入Soft-NMS替换传统NMS,充分利用Cascade R-CNN的多阶段检测模型提高检测效果。实验表明:基于改进Cascade R-CNN的井下行人检测方法可有效针对井下特殊复杂情况,在井下行人数据集上获得了91.4%的检测准确率,并使用COCO检测评价矩阵评估模型对改进Cascade R-CNN算法进行了验证,相较于传统Cascade R-CNN算法平均精准度(AP)提升约2%。 相似文献
10.
深度视频中的人体行为的识别研究主要集中在对深度视频进行特征表示上,为了获得具有判别性的特征表示,首先提出了深度视频中一种基于表面法向信息的局部二值模式( local binary pattern, LBP)算子作为初级特征,然后基于稀疏表示模型训练初级特征字典,获取初级特征的稀疏表示,最后对用自适应的时空金字塔划分的若干个子序列使用时空池化方法进行初级特征与稀疏系数的规格化,得到深度视频的高级特征,最终的特征表示实现了深度视频中的准确的人体行为识别。在公开的动作识别库MSR Action3D和手势识别库MSR Gesture3D上的实验证明了本文提出的特征表示的有效性和优越性。 相似文献
11.
土木工程实际结构损伤状态的时间跨度通常只占总生命周期的一小部分。为解决传统基于数据驱动的结构损伤识别方法缺乏足够多的损伤训练数据的问题,提出结合数字孪生和深度学习的结构损伤识别方法,并应用于实际工程。该方法利用数值仿真模型和在线监测数据构建结构的数字孪生,以获得不同损伤工况下结构动力响应的“大数据”;为了摆脱对外激励信息的依赖,应用经验模态分解法和传递率函数对得到的数据进行预处理;将预处理后的固有模态传递率函数数据作为深度学习的输入进行训练,实现结构的损伤识别。为验证方法的有效性,对实际结构未经训练的监测数据进行分析,结果表明,该方法泛化能力良好,能够有效识别结构损伤状况。通过数字孪生技术解决了传统方法数据匮乏的问题,不需要任何地震信息,利用固有模态传递率函数数据训练的深度神经网络仍能保持较高的损伤识别准确率,二者结合可以使工程结构健康监测更为主动、可靠、高效。 相似文献
12.
针对与日俱增的隧道养护需求,为了节约时间与人力成本,提出基于卷积神经网络的公路隧道衬砌病害检测方法. 利用自主研制的隧道智能快速检测车采集24条隧道衬砌的图像,构建超过20 000张病害图像的高质量数据集. 结合隧道衬砌病害的成因及特点,分别构建单阶段SSD模型和两阶段R-FCN模型在自制的数据集上训练,对检测结果进行对比分析,提出离线式隧道衬砌病害检测方案. 试验结果表明,SSD模型的识别准确率为98%,总的平均精度均值(mAP)为72%,检测速度较快,适用于隧道的快速诊断. R-FCN模型的识别准确率为85%,总的mAP达到91%,检测精度较高,适用于隧道病害的后期处理. 利用这2种检测模型均可以提升检测效率和精度. 相似文献
13.
Aimed at the deficiency of traditional techniques of radar emitter feature extraction which rely heavily on artificial experience, a novel emitter identification algorithm based on joint deep time-frequency features is proposed. Time-domain signals are transformed into the 2-D time-frequency domain, and dimensionality reduction is implemented with random projection and principal component analysis with respect to sustaining subspace and energy. In the phase of pre-training, the deep model is layer-wise trained with unlabelled samples and network parameters are fine-tuned with label information. Finally the identification task is achieved with a logistic regression classifier. 6 types of emitter signals are adopted in simulation experiments to validate the effectiveness of the proposed algorithm, the experimental results indicating that the joint deep features help to obtain higher identification accuracy and that the algorithm is more efficient. 相似文献
14.
为了提升滤波器组多载波(FBMC)系统的通信质量,针对符号检测与信道估计问题,研究系统框架和虚部干扰问题,提出基于深度学习的FBMC系统信道估计与检测方法. 搭建完整的FBMC-偏移正交幅度调制(OQAM)系统与深度学习模型结合的仿真系统,设计接收数据的特征与标签处理;采用ResNet-DNN神经网络对信道符号检测模块建模,改进原模型网络结构和优化模型参数,和传统的分类器相比,提高了符号检测的准确性;采用CNN+NN模型对信道估计、均衡、符号检测模块进行建模和集成,理论分析和仿真结果表明,新方法的抗噪声能力、鲁棒性和误比特率(BER)性能均优于正交频分复用(OFDM)系统和基于导频估计的FBMC系统性能. 相似文献
15.
实际交通环境规划最优路径的重要问题是无人车智能导航,而无人车全局路径规划研究主要在于模拟环境中算法求解速度的提升,考虑大部分仅路径距离最优或局限于当前道路的自身状况,本研究针对实际环境中的其他因素及其未来的变化和动态路网中无人车全局路径规划的复杂任务,基于预测后再规划的思想提出面向实际环境的无人车驾驶系统框架,并结合深... 相似文献
16.
无人作战飞机(unmanned combat aerial vehicle,UCAV)在进行空战自主机动决策时,面临大规模计算,易受敌方不确定性操纵的影响。针对这一问题,提出了一种基于深度强化学习算法的无人作战飞机空战自主机动决策模型。利用该算法,无人作战飞机可以在空战中自主地进行机动决策以获得优势地位。首先,基于飞机控制系统,利用MATLAB/Simulink仿真平台搭建了六自由度无人作战飞机模型,选取适当的空战动作作为机动输出。在此基础上,设计了无人作战飞机空战自主机动的决策模型,通过敌我双方的相对运动构建作战评估模型,分析了导弹攻击区的范围,将相应的优势函数作为深度强化学习的评判依据。之后,对无人作战飞机进行了由易到难的分阶段训练,并通过对深度Q网络的研究分析了最优机动控制指令。从而无人作战飞机可以在不同的态势情况下选择相应的机动动作,独立评估战场态势,做出战术决策,以达到提高作战效能的目的。仿真结果表明,该方法能使无人作战飞机在空战中自主的选择战术动作,快速达到优势地位,极大地提高了无人作战飞机的作战效率。 相似文献
17.
远程数字视频监控系统具有传统模拟监控系统无法比拟的优点。但当前远程数字视频监控系统难以推广应用,主要问题是这种系统给网络以沉重的负担,并且未能有效地使用所获取的视频信息。本文报道对该系统的改进:采用多路视频流整合处理后的网上传输系统结构,有效地降低了网络负担;同时提供的重要视频段的剪辑、管理和动态报警信息管理等功能极大地提高了信息的使用价值。实际运行已证实系统结构的合理性和可靠性。 相似文献
18.
远程数字视频监控系统具有传统模拟监控系统无法比拟的优点。但当前远程数字视频监控系统难以推广应用,主要问题是这种系统给网络以沉重的负担,并且未能有效地使用所获取的视频信息。本文报道对该系统的改进:采用多路视频流整合处理后的网上传输系统结构,有效地降低了网络负担;同时提供的重要视频段的剪辑、管理和动态报警信息管理等功能极大地提高了信息的使用价值。实际运行已证实系统结构的合理性和可靠性。 相似文献