共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents the development of soft clustering and learning vector quantization (LVQ) algorithms that rely on multiple weighted norms to measure the distance between the feature vectors and their prototypes. Clustering and LVQ are formulated in this paper as the minimization of a reformulation function that employs distinct weighted norms to measure the distance between each of the prototypes and the feature vectors under a set of equality constraints imposed on the weight matrices. Fuzzy LVQ and clustering algorithms are obtained as special cases of the proposed formulation. The resulting clustering algorithm is evaluated and benchmarked on three data sets that differ in terms of the data structure and the dimensionality of the feature vectors. This experimental evaluation indicates that the proposed multinorm algorithm outperforms algorithms employing the Euclidean norm as well as existing clustering algorithms employing weighted norms. 相似文献
2.
This paper presents the development and investigates the properties of ordered weighted learning vector quantization (LVQ) and clustering algorithms. These algorithms are developed by using gradient descent to minimize reformulation functions based on aggregation operators. An axiomatic approach provides conditions for selecting aggregation operators that lead to admissible reformulation functions. Minimization of admissible reformulation functions based on ordered weighted aggregation operators produces a family of soft LVQ and clustering algorithms, which includes fuzzy LVQ and clustering algorithms as special cases. The proposed LVQ and clustering algorithms are used to perform segmentation of magnetic resonance (MR) images of the brain. The diagnostic value of the segmented MR images provides the basis for evaluating a variety of ordered weighted LVQ and clustering algorithms. 相似文献
3.
Soft learning vector quantization 总被引:3,自引:0,他引:3
Learning vector quantization (LVQ) is a popular class of adaptive nearest prototype classifiers for multiclass classification, but learning algorithms from this family have so far been proposed on heuristic grounds. Here, we take a more principled approach and derive two variants of LVQ using a gaussian mixture ansatz. We propose an objective function based on a likelihood ratio and derive a learning rule using gradient descent. The new approach provides a way to extend the algorithms of the LVQ family to different distance measure and allows for the design of "soft" LVQ algorithms. Benchmark results show that the new methods lead to better classification performance than LVQ 2.1. An additional benefit of the new method is that model assumptions are made explicit, so that the method can be adapted more easily to different kinds of problems. 相似文献
4.
Fuzzy algorithms for learning vector quantization 总被引:14,自引:0,他引:14
This paper presents the development of fuzzy algorithms for learning vector quantization (FALVQ). These algorithms are derived by minimizing the weighted sum of the squared Euclidean distances between an input vector, which represents a feature vector, and the weight vectors of a competitive learning vector quantization (LVQ) network, which represent the prototypes. This formulation leads to competitive algorithms, which allow each input vector to attract all prototypes. The strength of attraction between each input and the prototypes is determined by a set of membership functions, which can be selected on the basis of specific criteria. A gradient-descent-based learning rule is derived for a general class of admissible membership functions which satisfy certain properties. The FALVQ 1, FALVQ 2, and FALVQ 3 families of algorithms are developed by selecting admissible membership functions with different properties. The proposed algorithms are tested and evaluated using the IRIS data set. The efficiency of the proposed algorithms is also illustrated by their use in codebook design required for image compression based on vector quantization. 相似文献
5.
Shiueng-Bien Yang 《Pattern recognition》2008,41(2):689-700
Multistage vector quantization (MSVQ) and their variants have been recently proposed. Before MSVQ is designed, the user must artificially determine the number of codewords in each VQ stage. However, the users usually have no idea regarding the number of codewords in each VQ stage, and thus doubt whether the resulting MSVQ is optimal. This paper proposes the genetic design (GD) algorithm to design the MSVQ. The GD algorithm can automatically find the number of codewords to optimize each VQ stage according to the rate–distortion performance. Thus, the MSVQ based on the GD algorithm, namely MSVQ(GD), is proposed here. Furthermore, using a sharing codebook (SC) can further reduce the storage size of MSVQ. Combining numerous similar codewords in the VQ stages of MSVQ produces the codewords of the sharing codebook. This paper proposes the genetic merge (GM) algorithm to design the SC of MSVQ. Therefore, the constrained-storage MSVQ using a SC, namely CSMSVQ, is proposed and outperforms other MSVQs in the experiments presented here. 相似文献
6.
《Applied Soft Computing》2007,7(1):203-210
The measurement of distance is one of the key steps in the unsupervised learning process, as it is through these distance measurements that patterns and correlations are discovered. We examined the characteristics of both non-Euclidean norms and data normalisation within the unsupervised learning environment. We empirically assessed the performance of the K-means, neural gas, growing neural gas and self-organising map algorithms with a range of real-world data sets and concluded that data normalisation is both beneficial in learning class structure and in reducing the unpredictable influence of the norm. 相似文献
7.
An integrated approach to fuzzy learning vector quantization andfuzzy c-means clustering 总被引:2,自引:0,他引:2
Derives an interpretation for a family of competitive learning algorithms and investigates their relationship to fuzzy c-means and fuzzy learning vector quantization. These algorithms map a set of feature vectors into a set of prototypes associated with a competitive network that performs unsupervised learning. Derivation of the new algorithms is accomplished by minimizing an average generalized distance between the feature vectors and prototypes using gradient descent. A close relationship between the resulting algorithms and fuzzy c-means is revealed by investigating the functionals involved. It is also shown that the fuzzy c-means and fuzzy learning vector quantization algorithms are related to the proposed algorithms if the learning rate at each iteration is selected to satisfy a certain condition 相似文献
8.
In this paper, we discuss the influence of feature vectors contributions at each learning time t on a sequential-type competitive learning algorithm. We then give a learning rate annealing schedule to improve the unsupervised learning vector quantization (ULVQ) algorithm which uses the winner-take-all competitive learning principle in the self-organizing map (SOM). We also discuss the noisy and outlying problems of a sequential competitive learning algorithm and then propose an alternative learning formula to make the sequential competitive learning robust to noise and outliers. Combining the proposed learning rate annealing schedule and alternative learning formula, we propose an alternative learning vector quantization (ALVQ) algorithm. Some discussion and experimental results from comparing ALVQ with ULVQ show the superiority of the proposed method. 相似文献
9.
10.
Jung-Hua Wang Wei-Der Sun 《IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics》1999,29(5):642-653
This paper presents a self-creating neural network in which a conservation principle is incorporated with the competitive learning algorithm to harmonize equi-probable and equi-distortion criteria. Each node is associated with a measure of vitality which is updated after each input presentation. The total amount of vitality in the network at any time is 1, hence the name conservation. Competitive learning based on a vitality conservation principle is near-optimum, in the sense that problem of trapping in a local minimum is alleviated by adding perturbations to the learning rate during node generation processes. Combined with a procedure that redistributes the learning rate variables after generation and removal of nodes, the competitive conservation strategy provides a novel approach to the problem of harmonizing equi-error and equi-probable criteria. The training process is smooth and incremental, it not only achieves the biologically plausible learning property, but also facilitates systematic derivations for training parameters. Comparison studies on learning vector quantization involving stationary and nonstationary, structured and nonstructured inputs demonstrate that the proposed network outperforms other competitive networks in terms of quantization error, learning speed, and codeword search efficiency. 相似文献
11.
12.
为了提高动态数据集上模糊关联分类器(FAC)的建模效率,提出了一种基于演进向量量化(eVQ)聚类的增量模糊关联分类方法。首先,采用eVQ聚类算法增量更新数量属性上的高斯隶属度函数参数;然后,扩展早剪枝更新(UWEP)算法,使之适用于增量挖掘模糊频繁项;最后,以模糊相关度(FCORR)和分类规则前件长度为度量方式裁剪并更新模糊关联分类规则库。在4个UCI标准数据集上的实验结果表明,与批量模糊关联分类建模方法相比,所提方法能够在保证分类精度和解释性的前提下,减少模糊关联分类器的训练时间;基于eVQ的高斯隶属度函数的增量更新有助于提高动态数据集上模糊关联分类器的分类精度。 相似文献
13.
Adaptive data hiding for vector quantization images based on overlapping codeword clustering 总被引:1,自引:0,他引:1
Yen-Shing Tsai 《Information Sciences》2011,181(15):3188-3198
In this paper, an overlapping codeword clustering based data hiding scheme is presented. In this scheme, a mapping table is designed to determine the overlapping codeword clustering and to indicate the index modification in the secret embedding. The mapping table explores the relationship among the sub-codebook’s size, the codeword’s order and the embedding secret message to which the codeword overlapping in sub-codebooks with different sizes is permitted. In addition, the secret embedding is also determined according to the mapping table.The experimental results showed that the number of partitioned sub-codebooks was increased significantly. The average hiding capacity was about 30 K bits while the average embedding distortion was about 1.2 dB. In comparison to similar methods, the proposed scheme provided a larger hiding capacity than others while preserving a similar stego-image quality. Furthermore, the proposed scheme offered a better proportion of hiding compared to image distortion. 相似文献
14.
Edwin Lughofer 《Pattern recognition》2008,41(3):995-1011
In this paper, we extend the conventional vector quantization by incorporating a vigilance parameter, which steers the tradeoff between plasticity and stability during incremental online learning. This is motivated in the adaptive resonance theory (ART) network approach and is exploited in our paper for forming a one-pass incremental and evolving variant of vector quantization. This variant can be applied for online clustering, classification and approximation tasks with an unknown number of clusters. Additionally, two novel extensions are described: one concerns the incorporation of the sphere of influence of clusters in the vector quantization learning process by selecting the ‘winning cluster’ based on the distances of a data point to the surface of all clusters. Another one introduces a deletion of cluster satellites and an online split-and-merge strategy: clusters are dynamically split and merged after each incremental learning step. Both strategies prevent the algorithm to generate a wrong cluster partition due to a bad a priori setting of the most essential parameter(s). The extensions will be applied to clustering of two- and high-dimensional data, within an image classification framework and for model-based fault detection based on data-driven evolving fuzzy models. 相似文献
15.
16.
针对传统空调压缩机故障诊断工况信号采集困难的缺点,提出一种基于学习矢量量化(learning vector quantiza-tion,LVQ)神经网络的空调压缩机声纹识别模型用于空调压缩机故障诊断,将声纹识别技术引入压缩机故障诊断.对压缩机的声音数据进行预处理,包括预加重、分帧、加窗,在分帧步骤中针对压缩机的声音特性... 相似文献
17.
E. MwebazeAuthor Vitae P. SchneiderAuthor Vitae F.-M. SchleifAuthor VitaeJ.R. AduwoAuthor Vitae J.A. QuinnAuthor VitaeS. HaaseAuthor Vitae T. VillmannAuthor VitaeM. BiehlAuthor Vitae 《Neurocomputing》2011,74(9):1429-1435
We discuss the use of divergences in dissimilarity-based classification. Divergences can be employed whenever vectorial data consists of non-negative, potentially normalized features. This is, for instance, the case in spectral data or histograms. In particular, we introduce and study divergence based learning vector quantization (DLVQ). We derive cost function based DLVQ schemes for the family of γ‐divergences which includes the well-known Kullback-Leibler divergence and the so-called Cauchy-Schwarz divergence as special cases. The corresponding training schemes are applied to two different real world data sets. The first one, a benchmark data set (Wisconsin Breast Cancer) is available in the public domain. In the second problem, color histograms of leaf images are used to detect the presence of cassava mosaic disease in cassava plants. We compare the use of standard Euclidean distances with DLVQ for different parameter settings. We show that DLVQ can yield superior classification accuracies and Receiver Operating Characteristics. 相似文献
18.
19.
在对轨迹流矢量进行量化编码的基础上,提出了一种基于深度优先搜索的轨迹分布模式提取算法,生成了能够描述轨迹分布的序列模式图,并给出了与之相应的异常检测和行为预测方法。对不同场景的可见光和红外序列图像的实验表明,本文方法不仅能够学习轨迹中流矢量的分布,而且能够反映它们之间的时序关系,可以应用于室外复杂场景的目标异常行为检测。 相似文献
20.
针对传统岩性识别方法识别精度低,难以和地质经验有机结合的问题,提出了一种基于多种聚类算法和多元线性回归的多分类主动学习算法(ALCL)。首先,通过多种异构聚类算法聚类得到对应每种算法的类别矩阵,并通过查询公共点对类别矩阵进行标记和预分类;其次,提出优先级最大搜寻策略和最混乱查询策略选取用于训练聚类算法权重系数模型的关键实例;然后,定义目标求解函数,通过训练关键实例求解得到每种聚类算法的权重系数;最后,结合权重系数进行分类计算,从而对结果置信度高的样本进行分类。应用大庆油田油井的6个公开岩性数据集进行实验,实验结果表明,ALCL的分类精度最高时,比传统监督学习算法和其他主动学习算法提高了2.07%~14.01%。假设检验和显著性分析的结果验证了ALCL在岩性识别问题上具有更好的分类效果。 相似文献