首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Growth of thin Ag films produced by radio frequency magnetron sputtering   总被引:1,自引:0,他引:1  
Thin Ag films in the thickness range D = 14–320 nm were deposited by radio frequency magnetron sputtering on glass substrates at room temperature inside a vacuum chamber with base pressure of about 5 × 10− 6 Pa. The growth of the films was studied via X-ray diffraction and atomic force microscopy experiments. The two techniques are complementary and give us the opportunity to study the surface roughness, the statistical distribution and the average value of the grain size, as well as the texture of the samples. It is shown that the film roughness increases negligibly within the first 60 atomic layers of growth. The thicker films (D 300 nm) develop a nanocrystalline structure with a root mean square roughness of about 2.5 nm. The grain size evolves linearly with the thickness from 9.4 nm at D = 54 nm to 31.6 nm at D = 320 nm.  相似文献   

2.
The Bi1.5MgNb1.5O7 (BMN) thin films were prepared on platinum coated sapphire by rf magnetron sputter deposition. Effects of substrate temperature, sputter pressure and O2/(O2 + Ar) mixing ratio on phase structures and dielectric properties of thin films were investigated. The results indicated that sufficiently high substrate temperature and low sputter pressure would facilitate the formation of cubic pyrochlore in BMN thin films. Meanwhile, the appropriate O2/(O2 + Ar) mixing ratio of sputter atmosphere was required. The deposited Bi1.5MgNb1.5O7 cubic pyrochlore thin films with (222) oriented texture exhibited large tunability of ~ 50% at a maximum applied bias field of 1.5 MV/cm, with low dielectric loss of ~ 0.007. The temperature and frequency dependent dielectric measurements indicated that no noticeable dielectric dispersion was detected in BMN cubic pyrochlore thin films.  相似文献   

3.
Chien-Jen Tang  Kai Wu 《Thin solid films》2009,517(5):1746-1749
In this study, Ta2O5-SiO2 composite films with various proportions of Ta2O5 were prepared by radio frequency ion-beam sputtering deposition. The residual stress of each composite film was analyzed. The residual stresses of different graded-index-like layers made of composite films were studied. The results show that the residual stress of a single layered composite film was lower than that of pure SiO2 or a pure Ta2O5 film. Furthermore, when the composite film was made graded-index-like, the residual stress was reduced.  相似文献   

4.
TaSiN is a promising material for application as electrically conductive diffusion barrier for the integration of high permittivity perovskite materials in integrated circuits. TaSiN thin films were deposited by reactive radio frequency magnetron sputtering using TaSi and TaSi2.7 targets in an Ar/N2 atmosphere. The sputter power was varied in order to achieve different TaSiN compositions. The stoichiometry of as-deposited films was estimated using Rutherford backscattering spectroscopy. The as-deposited TaSiN thin films are amorphous. Their crystallization temperature is above 700 °C and increases with higher nitrogen content. They have metallic conduction and ohmic behavior. The resistivity of as deposited films is in the range from 10− 6 Ω m up to 10− 3 Ω m and increases with nitrogen content. It was found that p++-Si/Ta21Si57N21 develops unacceptable high contact resistance. Introducing an intermediate Pt layer the stack p++-Si/Pt/Ta21Si57N21 had a good conductive properties and good thermal stability at 700 °C.  相似文献   

5.
Indium tin oxide (ITO) thin films were deposited on unheated polyethylene naphthalate substrates by radio-frequency (rf) magnetron sputtering from an In2O3 (90 wt.%) containing SnO2 (10 wt.%) target. We report the structural, electrical and optical properties of the ITO films as a function of rf power and deposition time. Low rf power values, in the range of 100-130 W, were employed in the deposition process to avoid damage to the plastic substrates by heating caused by the plasma. The films were analyzed by X-ray diffraction and optical transmission measurements. A Hall measurement system was used to measure the carrier concentration and electrical resistivity of the films by the Van der Pauw method. The X-ray diffraction measurements analysis showed that the ITO films are polycrystalline with the bixbite cubic crystalline phase. It is observed a change in the preferential crystalline orientation of the films from the (222) to the (400) crystalline orientation with increasing rf power or deposition time in the sputtering process. The optical transmission of the films was around 80% with electrical resistivity and sheet resistance down to 4.9 × 10- 4 Ωcm and 14 Ω/sq, respectively.  相似文献   

6.
LiTaO3 thin films were deposited by radio-frequency magnetron sputtering with a Li enriched target composed of Li2O2/Ta2O5 (55:45 at.%). Morphology, crystallinity, dielectric and pyrolectric properties of thin films of LiTaO3 are studied according to the temperature of deposition and the nature of the back electrode (Ru/RuO2 and RuO2). In order to develop thermal microsensors containing pyrolectric thin layers deposited on membranes of SiNx ensuring the thermal isolation of the device, the final aim is to improve the pyroelectric coefficient for infrared pyroelectric detectors applications. The best pyroelectric coefficient of LiTaO3 thin films (400 nm), obtained for a growth temperature of 620 °C and a pressure of 0.67 Pa, is equal to 40 µC/m2 K.  相似文献   

7.
M.-C. Lin  D.-S. Wuu 《Thin solid films》2007,515(11):4596-4602
Transparent silicon oxide films were deposited on polyethylene terephthalate substrates by means of reactive magnetron sputtering with a mixture of argon and oxygen gases. The influences of process parameters, including the oxygen flow ratio, work pressure, radio frequency (RF) power density and deposition time, on the film properties, such as: deposition rate, morphology, surface roughness, water vapor/oxygen transmission rate and flexibility, were investigated. The experimental results show that the SiOx films deposited at RF power density of 4.9 W/cm2, work pressure of 0.27 Pa and oxygen flow ratio of 40% have better performance in preventing the permeation of water vapor and oxygen. Cracks are produced in the SiOx films after the flexion of more than 100 cycles. The minimum transmission rates of water vapor and oxygen were found to be 2.6 g/m2 day atm and 15.4 cc/m2 day atm, respectively.  相似文献   

8.
In this study, we discuss the case for integration of epitaxial (Pb,La)(Zr,Ti)O3 (PLZT) thin films with silicon for electro-optic device applications. PLZT films, approximately 500 nm thick, were grown by on-axis radio frequency magnetron sputtering on CeO2/YSZ-buffered Si(100) substrate with a SrRuO3 electrode layer embedded between CeO2 and PLZT. The structural properties and surface topography of the different oxide layers were examined with X-ray diffraction analysis and atomic force microscopy. The perovskite thin films were predominantly (001)-oriented, with a (002) rocking curve halfwidth of approximately 0.3° and a surface roughness compatible with requirements for application in optical devices. The PLZT cation stoichiometry was assessed from quantitative X-ray photoelectron spectroscopy. These measurements uncovered a substantial depletion of lead in the film surface for layers deposited at substrate temperatures above ~ 600 °C, whereas the surface concentration of La, Zr and Ti remained virtually unaffected over a wide range of growth temperatures.  相似文献   

9.
Polycrystalline CaCu3Ti4O12 thin films were deposited on Pt(111)/Ti/SiO2/Si substrates using radio frequency magnetron sputtering. The phase formation and the physical quality of the films were crucially dependent on the substrate temperature and oxygen partial pressure. Good quality films were obtained at a substrate temperature of 650 °C and 4.86 Pa total pressure with 1% O2. The dielectric constant (∼ 5000 at 1 kHz and 400 K) of these films was comparable to those obtained by the other techniques, eventhough, it was much lower than that of the parent polycrystalline ceramics. For a given temperature of measurements, dielectric relaxation frequency in thin film was found to be much lower than that observed in the bulk. Also, activation energy associated with the dielectric relaxation for the thin film (0.5 eV) was found to be much higher than that observed in the bulk ceramic (0.1 eV). Maxwell-Wagner relaxation model was used to explain the dielectric phenomena observed in CaCu3Ti4O12 thin films and bulk ceramics.  相似文献   

10.
Ruqiang Bao 《Thin solid films》2010,519(1):164-2642
Boron carbide thin films were deposited by radio frequency (RF) magnetron sputtering and characterized by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and high resolution transmission electron microscopy. The results reveal that the structure of thin films deposited at substrate temperatures lower than 350 °C is amorphous. We found that there are four chemical states for carbon in amorphous boron carbide thin films deposited by RF magnetron sputtering. One is the segregated carbon in form of the graphitic inclusions in the thin film identified by Raman spectroscopy and Raman mapping using two strong peaks at ~ 1360 cm− 1 and ~ 1590 cm− 1, but the XPS results show that the graphitic inclusions do not connect to the substrate directly. On the surface the carbon forms C=O bonds characterized by the peak of C1s core level at 285.0 eV besides B-C bonds in the boron carbide with the peak of C1s being at 282.8 eV. The detailed analysis of B-C bonds in the boron carbide shows that there are two states for carbon atoms in B-C bonds: in the C-B-C models with C1s peak at 282.3 eV and in the icosahedra with C1s peak at 283.3 eV.  相似文献   

11.
Thin films of Cu2Te were deposited, at room temperature, on glass substrates by magnetron sputtering from independent Cu and Te sources. This work presents the effect of annealing temperature on the optical, structural, and electrical properties of sputtered Cu2Te films. Annealing above 300 °C resulted in stoichiometric and near stoichiometric Cu2Te phases, whereas temperatures above 400 °C yielded films with single Cu2Te phase. In contrast, annealing at temperatures of 250 °C and below resulted in mixed phases of CuTe, Cu7Te5, Cu1.8Te, and Cu2Te. Analyses of transmittance and reflectance measurements for Cu2Te indicate that photon absorption occurs via indirect band transitions for incident photons with energy above the band gap energy and free carrier absorption below the band gap energy. The determined indirect band gap was 0.90 eV and its associated phonon energy was 0.065 eV. Optical phonon scattering was identified as the mechanism through which the momentum is conserved during absorption by free carriers. Electrical measurements show p-type conductivity and highly degenerate semiconducting behavior with a hole carrier concentration p = 5.18 × 1021 cm− 3.  相似文献   

12.
B-site modification lead strontium zirconate titanate Pb0.4Sr0.6ZrxTi1 − xO3 (PSZT, x = 0-0.7) thin films were prepared on Pt/TiO2/SiO2/Si substrates by a sol-gel method. The XRD results indicate that paraelectric PSZT thin films at room temperature are obtained as x approaches 0.2. The temperature-dependent dielectric and hysteresis loop measurements reveal that the thin films have diffuse phase transition characteristics and relaxor-like behavior with nano-polar regions in the paraelectric films at room temperature. The Curie temperature of the PSZT thin films varies with the Zr contents, exhibiting a complex trend. This can be attributed to two competitive factors: higher mobility of Ti4+ than Zr4+ and smaller open space left for the displacement of Ti ions with the increase of Zr content. The further increase of the Zr contents leads to the simultaneous decrease of dielectric constant, dielectric loss and tunability. PSZT (x = 0.4) thin film shows the largest figure of merit of 24.3 with a moderate tunability of 55.8% and a dielectric loss of 0.023. This suggests that B-site ions have different roles in modifying the electrically tunable performance of PSZT thin films for tunable microwave device applications.  相似文献   

13.
Chromium nitride thin films were deposited on SA-304 stainless steel substrates by using direct-current reactive magnetron sputtering. The influence of process conditions such as nitrogen content in the fed gas, substrate temperature, and different sputtering gases on microstructural characteristics of the films was investigated. The films showed (200) preferred orientation at low nitrogen content (< 30%) in the fed gas. The formation of Cr2N and CrN phases was observed when 30% and 40% N2 were used, with a balance of Ar, respectively. Field emission scanning electron microscopy and atomic force microscopy were used to characterize the morphology and surface topography of the thin films, respectively. Microhardness tests showed a maximum hardness of 16.95 GPa for the 30% nitrogen content.  相似文献   

14.
Hidetoshi Miyazaki 《Vacuum》2008,83(2):416-418
YbAl3 single-phase bulk alloy was synthesized by melting at 1258 K using raw Yb and Al metals in the ratio of 1:2.2. A sputtering YbAl3 target was prepared using the precursor YbAl3 bulk alloy with the spark plasma sintering process. An amorphous Yb-Al film was fabricated by RF magnetron sputtering using the YbAl3 target, and a single-phase crystalline YbAl3 film was fabricated by annealing the amorphous Yb-Al film at temperatures higher than 923 K in Ar atmosphere.  相似文献   

15.
Cd1 − xZnxTe films were prepared by radio frequency (r.f.) magnetron sputtering from Cd0.9Zn0.1Te slices target with different sputtering power (60-120 W). The effects of sputtering power on the properties of Cd1 − xZnxTe films were studied using X-ray diffraction (XRD), energy dispersive X-ray (EDX), atomic force microscopy (AFM), ultraviolet spectrophotometer and Hall effect measurements. The composition of the deposited films was determined by EDX. The Cd content was found always to be higher than the Te content, regardless of sputtering power. This behavior may be explained by the preferential sputtering of cadmium atoms in the target. XRD studies suggest that ZnTe secondary phases were coexisted in Cd1 − xZnxTe films. The origin of the secondary phase is ascribed to the lowest sticking coefficient of Zn atom. AFM micrographs show that the grain size increases with the sputtering power. The optical transmission data indicate that shallow absorption edge occurs in the range of 750-850 nm, and the sputtering power does not have a clear effect on the optical absorption coefficient. In Hall Effect measurements, the sheet resistivities of the deposited films are 1.988 × 108, 8.134 × 107, 8.088 × 107 and 3.069 × 107 Ω/sq, respectively, which increase with the increasing of sputtering power.  相似文献   

16.
桑敏  刘发民  丁芃  毋二省  王天民 《功能材料》2005,36(7):1126-1130
Transparent titania thin films were prepared on glass substrates by radio frequency magnetron sputtering from TiO2 ceramic target. The structure and morphology of those films with different sputtering power and substrate temperature has been measured with X-ray diffractometer (XRD) and atomic force microscope (AFM). It was found that the films were anatase and a mix of anatase-rutile with different condition. The transmission of the films has been studied by using UV-VIS-NIR spectrometer. It shows absorption edge has a little red shift with the increase of sputtering power and substrate temperature. The photocatalytic activity of the films was tested on the degradation of Rhodamine B solution. T.he highest degradation efficiency in our experiment was obtained in the film deposited at 550℃ and 130W.  相似文献   

17.
The detailed growth of FeSb2 films formed on quartz (0001) substrates by magnetron sputtering is reported. FeSb2 films with different orientations and compositions can be produced by adjusting the Ar working gas pressure and the substrate temperature. By employing FeSb2 thin layers produced at different substrate temperatures as templates, < 101>-, < 120>- and < 002>-textured FeSb2 films were produced under identical growth conditions. The thermoelectric properties of film samples grown at different temperatures were measured and the effects of Sb and FeSb impurities were investigated.  相似文献   

18.
Silicon nitride is an important material in very-large-scale integration fabrication and processing. Recent work on films prepared by radio frequency magnetron sputtering using nitrogen gas have shown that the relative permittivity is typically 6.3 and that aluminium forms an ohmic contact to this material. Under direct current (DC) bias the films exhibited space-charge-limited conductivity with a bulk trap density of the order of 2×1024 m−3. In the present work alternating current electrical measurements were made on identical samples as a function of frequency and temperature. Conductivity appeared to be by hopping at lower temperatures, giving way to a free-band conduction process with activation energy of typically 0.44 eV at higher temperatures. Over a limited range of frequency and temperature the model of Elliott was applicable, and yielded a value of 2.87×1023 m−3 for the density of localised states, in reasonable agreement with our estimate of the trap density from DC measurements. As in the DC measurements capacitance followed a geometric relationship with relative permittivity 6.3, and showed a moderate decrease with increasing frequency and an increase with increasing temperature, tending towards a constant value at high frequencies and low temperatures. The loss tangent showed a minimum in its frequency dependence, which appeared to shift to higher frequencies with increasing temperature. The measurements are consistent with the model of Goswami and Goswami for samples having ohmic contacts, and are typical of results obtained on other insulating thin film structures.  相似文献   

19.
Thin films of Ta2O5, Nb2O5, and HfO2 were deposited by reactive-low-voltage-ion-plating (RLVIP) on unheated glass and silicon substrates. The film thickness was about 200 nm. Optical properties as well as mechanical film stress of these layers were investigated in dependence of various deposition parameters, i.e. arc current and oxygen partial pressure. For an arc current in the range between 40 and 50 A and an oxygen partial pressure of at least 11 · 10− 4 mbar good results were obtained. The refractive index and film thickness were calculated from spectrophotometric transmission data using the Swanepoel theory. For example at 550 nm wavelength the refractive index for thin RLVIP-Nb2O5-films was found to be n550 = 2.40. The optical absorption was obtained by photo-thermal deflection spectrometry. For the investigated materials absorption coefficients in the range of k = 5 · 10− 4 at 515 nm wavelength were measured. The mechanical film stress was determined by measuring the difference in bending of silicon substrates before and after the deposition process. For dense films, i.e. no water vapour sorption on atmosphere, the mechanical film stress was always compressive with values of some hundred MPa. In case of films deposited with higher arc currents (Iarc > 60A) and lower oxygen pressure (< 15 · 10− 4 mbar) the influence of a post deposition heat treatment at 350 °C for 4 h on air was also investigated. For these films the properties could clearly be improved by such treatment. However, by using lower arc currents and higher oxygen partial pressure during the ion plating process, immediately dense and environmental stable films with good optical as well as mechanical properties could be achieved without post deposition heat treatment. All the results obtained will be presented in graphs and diagrams.  相似文献   

20.
ZnO thin films with preferential C-orientation and dense microstructure have been prepared using RF magnetron sputtering method by the insertion of a sol-gel grown ZnO buffer layer. The XRD results show that the C-orientation of the film deposited on ZnO buffer is obviously better than that deposited directly on lime-glass substrate. With an increase of the RF power from 100 to 380 W, C-orientation of the films with ZnO buffer improves and the grain size increases. When the RF power equals 550 W, the orientation of the film changes to (1 0 0) and the grain size decreases. The crystalline and microstructure quality of the films can be improved after annealing, however, the grain size is not much dependent on the annealing temperature in the range of 560-610 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号