首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
齿廓偏差是引起传动系统产生振动和噪声的主要因素之一,为了有效探究齿廓偏差对大重合度齿轮动态特性的影响,本文在充分考虑参与啮合轮齿齿廓偏差特点的基础上开展了大重合度齿轮动态特性研究。通过分析大重合度齿轮的啮合特点,构建了考虑不同轮齿啮合状态的大重合度齿轮多齿动力学模型。在考虑齿廓偏差构成特征的基础上,利用齿面接触分析(TCA)方法对产生的啮合误差进行了求解,并将其求解结果引入到大重合度齿轮多齿动力学模型,形成了考虑多齿廓偏差的大重合度齿轮动力学特性分析方法。在充分考虑每对轮齿齿廓偏差的基础上,分析了不同因素对大重合度齿轮动力学特性的影响。结果表明,本文的研究方法能够充分考虑到参与啮合轮齿不同齿廓偏差带来的影响,为进一步提高大重合度齿轮动态特性分析的有效性提供了参考。  相似文献   

2.
为改善面齿轮啮合性能,设计了小轮齿廓、齿向修形曲线,将3次B样条拟合的修形曲面与小轮理论齿面叠加构造精确的拓扑修形齿面,建立了小轮拓扑修形面齿轮副TCA、LTCA计算模型,并试验验证了理论分析的正确性。算例分析表明:小轮拓扑修形能获得开口向下2阶抛物线几何传动误差,接触路径与齿根倾斜,较传统面齿轮副,有效重合度提高了约10%,容差能力提高了400%;各载荷下承载传动误差波动幅值均减小,齿面载荷分布变化均匀,轮齿进入和退出啮合时承受载荷变小。  相似文献   

3.
为了提高面齿轮传动的承载能力,改善齿轮副啮合传动时的动态性能,以齿面接触分析和承载接触分析为工具,通过齿面曲线修形调整接触迹线方向,提出设计面齿轮副大重合度的方法.利用盘形刀具对小齿轮沿齿长方向抛物线修形,降低啮合印痕对安装误差的敏感性.以重合度和承载传动误差的振动幅值为目标,给出了大重合度面齿轮传动优化设计流程.引入了啮合齿对系数的概念,对齿轮副的重合度进行了计算.研究结果表明:通过齿轮副抛物线修形因数和抛物线顶点参数,以及沿小齿轮齿向修形因数的设计与调整,可设计出动态性能良好,重合度高达3.0以上的面齿齿轮副,为高负载的面齿轮传动设计提供了依据.  相似文献   

4.
高速内啮合人字齿轮多目标优化修形   总被引:2,自引:1,他引:1  
为提高高速内啮合人字齿轮的啮合性能,提出一种考虑弹性轴支撑变形的齿面多目标优化设计方法.通过轮齿接触分析和承载接触分析计算齿面接触线离散点载荷以及一个啮合周期的轮齿承载变形.应用基于混合弹流润滑模型的摩擦系数回归方程确定离散点的局部摩擦系数,利用Blok闪温公式求得高速啮合传动的齿面闪温.以承载传动误差幅值最小、齿面闪温最小、齿面载荷分布均匀为优化目标,采用遗传算法确定齿面最佳修形量.实例计算结果表明:在无误差角和有误差角两种情况下,齿面修形后,承载传动误差幅值都大幅下降,啮入区和啮出区齿面闪温都明显降低;由于避免了边缘接触,齿面载荷分布得到了有效改善.提出的优化设计方法结果可靠,是高速齿轮修形设计的有效手段.  相似文献   

5.
基于齿面承载接触分析方法,建立了修形斜齿轮时变啮合刚度、静态传递误差和综合啮合误差计算模型。以系统振动激振力波动量最小为目标,确定了设计负载扭矩和理想啮合状况下3种修形方式的最佳修形参数,并分析了3种修形方式对斜齿轮时变啮合刚度、静态传递误差以及综合啮合误差的影响。通过考察宽范围负载扭矩和啮合错位影响下的修形斜齿轮系统振动激振力和动态传递误差,分析了3种修形方式对负载扭矩和啮合错位的敏感性。研究表明:采用不同修形方式的斜齿轮时变啮合刚度、静态传递误差以及综合啮合误差差别较大,然而系统振动激振力波动量均得到了显著降低。当负载扭矩大于设计扭矩时,3种修形方式仍有较好减振效果。当负载扭矩过小时,3种修形方式的齿轮系统振动将大于未修形齿轮系统,且共振转速略有降低。随着啮合错位量的增加,系统共振转速逐步降低,且3种修形方式的减振效果均逐渐降低,直至不再具有减振效果。研究结果可为进一步建立齿面修形稳健设计方法提供有效参考。  相似文献   

6.
为实现准双曲面齿轮的多目标优化,建立了神经网络代理模型,用以描述Ease off修形参数和传递误差、齿根应力、啮合损失功率的关系。首先,利用动力学软件MASTA建立准双曲面齿轮驱动桥模型,基于敏感度系数矩阵,推导出齿面偏差二阶泰勒展开式对应的机床修形加工参数,建立修形齿轮模型。其次,通过MASTA的加载齿面接触分析功能计算修形齿轮模型的传递误差、齿根应力、啮合损失功率,最终建立神经网络代理模型。最后,采用NSGA-Ⅱ多目标优化算法优化代理模型,进行对比验证。结果表明:采用本多目标优化方法可有效降低准双曲面齿轮的传递误差、齿根应力、啮合损失功率。  相似文献   

7.
考虑多工况下兆瓦级风电齿轮箱各齿轮副具有不同的啮合特性,提出了一种齿轮修形的优化方法.基于Romax Designer软件对某兆瓦级风电齿轮箱齿轮进行多工况仿真分析,定位啮合特性各异的问题齿轮副;采用现有修形公式初算问题齿轮副各修形量,分析了各修形量在微调范围内齿轮齿面单位载荷与传动误差幅值的变动趋势;依据该变动趋势及齿轮啮合特性的差异,提出了一种判断优化目标函数单调性的修形量寻优方法.寻优结果表明,修形后齿轮齿面载荷分布和传动误差幅值明显优化,兆瓦级风电齿轮箱齿轮振动噪音及破坏的情况明显改善.  相似文献   

8.
为研究热变形对齿轮传动特性的影响,本文推导出了渐开线齿廓上任一点沿啮合线方向的热变形量计算公式,并在此基础上研究了热变形对齿间载荷分配系数、传动误差及齿廓修形的影响。提出了热弹耦合条件下齿廓分段修形和连续修形两种方式,并得到两种方式下修形量的表达式;分析了按两种不同方式进行修形后的载荷分配系数和传动误差。研究结果表明:分段修形可以很好地保持啮合过程载荷分配系数的连续性,消除载荷突变,减小传动误差的波动,使绝对误差趋于恒定;连续修形载荷分配系数连续,载荷突变消失,单齿啮合区稍有增大,误差波动较分段修形增大。本研究可以有效降低齿轮传动过程中的振动噪声,具有一定的应用价值。  相似文献   

9.
斜齿球形齿轮齿面接触分析   总被引:1,自引:0,他引:1  
为了提高球形齿轮承载能力和降低啮合质量对安装误差的敏感性,对斜齿球形齿轮齿面进行了修形.用产形齿条方法和啮合理论,推导斜齿球形齿轮齿面数学模型,并用抛物线形齿廓刀具对齿面修形;根据两齿面在啮合接触中连续相切条件,建立了含有安装误差的齿面接触分析(TCA)模型.齿轮副啮合仿真结果表明:凸-凹型斜齿球形齿轮副接触迹线沿着齿...  相似文献   

10.
为了提高面齿轮传动的动态性能和降低啮合对安装误差的敏感性,提出具有高阶传动误差函数的面齿轮齿面设计方法,描述了齿轮传动反映输出和输入角度关系的四阶传动误差函数的数学模型,考虑刀具齿轮与圆柱齿轮齿数差,推导了面齿轮数控加工过程中具有四阶传动误差函数的齿面方程.利用盘形砂轮对渐开线圆柱齿轮齿向修形,发展圆柱齿轮齿向修形的鼓形齿面.建立面齿轮副轮齿接触分析条件,对具有四阶传动误差函数的面齿轮和齿向鼓形的渐开线圆柱齿轮的啮合进行了计算机仿真和啮合分析.研究结果表明,设计传动误差幅值为10″,在对准安装和轴夹角误差为0.02。的条件下,齿轮副输出的高阶传动误差幅值为0″,其他形位参数与预置的参数完全一致;齿面接触区域对安装误差不敏感,接触迹线始终稳定在齿轮半径的172mm附近。  相似文献   

11.
The meshing characteristic of asymmetric involute spur gear was studied, the equations of the geometric shape of the asymmetric gear for both sides were deduced, and the equations of contact ratio and the key points of contact were also obtained.Meanwhile, an involute slope modification method considering the effects of static transmission errors was proposed based on the meshing properties. The characteristic of the involute slope modification was analyzed by changing different modification parameters.The mesh stiffness and synthetic mesh stiffness of unmodified and modified asymmetric spur gears were investigated. Furthermore,the spectrums of synthetic mesh stiffness under different modification parameters were compared. Research results showed that the modification parameters influence the meshing performance of gear pairs, and the proposed modification method was feasible to improve the transmission performance of gear pairs with appropriate modification parameters.  相似文献   

12.
Tooth profile shift will change the thickness of gear teeth and a part of geometrical parameters of a gear pair, thus influencing its mesh stiffness and consequently the dynamic performances. In this paper, an analytical mesh stiffness calculation model for an internal gear pair in mesh considering the tooth profile shift is developed based on the potential energy principle. Geometrical representations of the tooth profile shift are firstly derived, and then fitted into the analytical tooth stiffness model of gears. This model could supply a convenient way for mesh stiffness calculation of profile shifted spur gears. Then, simulation studies are conducted based on the developed model to demonstrate the effects of tooth profile shift coefficient on the tooth compliances and the mesh stiffness of the internal spur gear pair. The results show that tooth profile shift has an obvious influence on the mean value, amplitude variation and phase of the mesh stiffness, from which it can be predicted that the dynamic response of an internal gear transmission system will be affected by the tooth profile shift.  相似文献   

13.
Combining the loaded tooth contact analysis(LTCA) method and the gear dynamic model, a wear prediction model for spur gears with tip relief is established. The simulated wear depth is verified by the experimental results in a published reference.Based on the wear profile, the mesh stiffness and the tooth root stress obtained from the proposed model are compared with those obtained from the finite element model. Relative to the finite element method, the proposed method can greatly reduce the computation time. The effects of the tip relief and surface wear on the meshing and the dynamic characteristics are discussed.The tip relief can greatly decelerate the surface wear. Appropriate tip relief and slight wear can decrease the tooth interference and reduce the system vibration. Furthermore, the effects of the rotational speed on the wear depth are also studied and it is found that the quasi-static model is applicable to wear prediction when the rotational speed is away from the harmonic resonance peak.  相似文献   

14.
应用齿轮啮合理论,提出了斜齿轮啮合滑动摩擦功损的计算方法。首先,利用轮齿接触分析得到齿轮副的啮合路径和接触印痕;然后,利用承载接触分析求得齿面接触点法向载荷和承载传动误差,通过求解一个周期内所有啮合位置,可以得到一对轮齿从进入啮合到退出啮合所有接触点的法向载荷和承载传动误差,极大减少了计算工作量;最后,将承载传动误差转换成齿面接触点的相对滑动速度并与该接触点处的摩擦力相乘得到该点的滑动摩擦功损,将所有接触点的滑动摩擦功损一起带入功率近似计算公式从而得到斜齿轮啮合的滑动摩擦功率损失。  相似文献   

15.
斜齿轮是机械装备的重要传动元件,其啮合刚度的准确计算和传动系统的稳定性分析具有重要的实际意义。根据斜齿轮轮齿接触线的变化规律,结合斜齿轮单对齿单位长度啮合刚度变化规律和ISO刚度计算准则,提出一种斜齿轮啮合刚度计算方法,分析了不同参数下斜齿轮传动的啮合刚度波动特性;基于分析所得的啮合刚度变化规律建立了斜齿轮传动的动力学模型,并利用多尺度法对动力学模型进行了求解,研究了外加载荷和啮合刚度波动对斜齿轮传动主共振的影响。结果表明:给出的斜齿轮啮合刚度计算方法能够较快速、准确地获取啮合刚度波动变化规律,将其引入斜齿轮动态特性分析中,能够更加准确地反映斜齿轮啮合刚度波动和载荷波动对系统主共振稳定性的影响规律;在其他条件不变时,斜齿轮主共振稳定性随静载荷和啮合刚度波动增加而增加,但较大静载荷会导致主共振频率增大,而且在高频激励下,即使较小的啮合刚度波动也会触发主共振的不稳定;载荷波动增加会使斜齿轮主共振幅值增大,使系统稳定性变差。  相似文献   

16.
斜齿轮高阶传动误差设计与分析   总被引:1,自引:0,他引:1  
为了改善斜齿轮副啮合传动性能,提出了应用四阶传动误差函数曲线,采用数控加工展成斜齿轮.利用抛物线齿廓的产形齿条与圆柱齿轮啮合推导小轮齿面方程.采用假想小轮的方法推导了四阶齿线修形大轮齿面数学模型.根据两齿面在啮合中连续相切条件,建立了含有误差的轮齿接触分析模型(TCA).仿真结果表明:该设计降低了接触印痕对安装误差的敏感性,相邻两个啮合周期的啮合转换点处,传动误差曲线的切线夹角接近180°,降低振动及冲击.  相似文献   

17.
HGT准双曲面齿轮精确建模和加载接触分析   总被引:1,自引:0,他引:1  
包含工作齿面和齿根过渡曲面的齿轮完整的三维几何模型是进行有限元分析等的基础。论文以加工方法HGT为研究对象,根据格里森HGT准双曲面齿轮的加工方法和加工原理,并以摇台机床为基础,推导了理论工作齿面方程和齿根过渡曲面方程,在此基础上建立了三维几何仿真模型,并对齿轮副进行了轮齿加载接触分析,得到齿轮副在拟真实工况下的齿面印痕、传动误差曲线和载荷分配系数。最后通过切齿试验验证了理论推导的正确性。仿真和试验结果表明:1) 齿轮重合度大,传动平稳;2) 当大轮加载扭矩超过一定值(文中为500N.m)时,轮齿会出现边缘接触。该研究为齿轮的强度和振动分析等提供了可靠的前提条件。  相似文献   

18.
Research on meshing theory of noninvolute beveloid gears   总被引:4,自引:0,他引:4  
0 INTRODUCTIONThistypeoftransmissionofbeveloidgears (alsoknownasconicalinvolutegears)hasdrawnmuchattentionsinceitwasproposedbyanAmerican ,A .S .Beamin195 4.Becausebeveloidgearscanservethemotiontrans missionbetweenparallelaxesandcaneasilyadjustthebacklashofthetwomatinggearsbymovingthemaxially ,beveloidgearscanbeappliedtosomeultra precisionma chinetransmissionswithlimitedbacklash .Muchprogresshasbeenmadeinthestudyofmeshingtheoryonbeveloidgearswithparallel axes .Infact ,alotofbeveloidgears…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号