共查询到20条相似文献,搜索用时 15 毫秒
1.
Jens G. Linden Tomasz Larkowski Keith J. Burnham 《International journal of control》2013,86(11):1625-1643
Algorithms for the recursive/semi-recursive estimation of the system parameters as well as the measurement noise variances for linear single-input single-output errors-in-variables systems are considered. Approaches based on three offline techniques are presented: namely, the bias eliminating least squares, the Frisch scheme and the extended bias compensating the least squares method. Whilst the underlying equations used within these approaches are identical under certain design choices, the performances of the recursive/semi-recursive algorithms are investigated via simulation, in order to determine the most suitable technique for practical applications. 相似文献
2.
Erwei BAI 《控制理论与应用(英文版)》2003,1(1):17-27
The least trimmed squares estimator (LTS) is a well known robust estimator in terms of protecting the estimate from the outliers. Its high computational complexity is however a problem in practice. We show that the LTS estimate can be obtained by a simple algorithm with the complexity O( N In N) for large N, where N is the number of measurements. We also show that though the LTS is robust in terms of the outliers, it is sensitive to the inliers. The concept of the inliers is introduced. Moreover, the Generalized Least Trimmed Squares estimator (GLTS) together with its solution are presented that reduces the effect of both the outliers and the inliers. 相似文献
3.
ErweiBAI 《控制理论与应用(英文版)》2003,1(1):17-27
The least trimmed squares estimator (LTS) is a well known robust estinaator in terms of protecting the estimatefrom the outliers. Its high computational complexity is however a problem in practice. We show that the LTS estimate can be obtained by a simple algorithm with the complexity O( N In N) for large N, where N is the number of measurements. We also showthat though the LTS is robust in terms of the outliers, it is sensitive to the inliers. The concept of the inliers is introduced. Moreover, the Generalized Least Trimmed Squares estimator (GLTS) together with its solution are presented that reduces the effect of both the outliers and the inliers. 相似文献
4.
John B. Moore 《Automatica》1978,14(5):505-509
In this paper almost sure convergence results are derived for least squares identification algorithms. The convergence conditions expressed in terms of the measurable signal model states derived for asymptotically stable signal models and possibly nonstationary processes are in essence the same as those previously given, but are derived more directly. Strong consistency results are derived for the case of signal models with unstable modes and exponential rates of convergence to the unstable modes are demonstrated. These latter convergence results are stronger than those earlier ones in which weak consistency conditions are given and there is also less restriction on the noise disturbances than in earlier theories. The derivations in the paper appeal to martingale convergence theorems and the Toeplitz lemma. 相似文献
5.
现有的l^1鲁棒辨识方法依赖于观测数据窗的起始时刻因而不能用来辨识时变系统,针对该问题基于最小二乘法提出了一种l^1鲁棒辨识算法.该算法与观测窗的起始时刻无关,可用于时变系统的辨识.证明了当试验输入为持续激励信号时所提出的算法为本质最优算法,进一步证明了周期持续激励序列为最优试验信号,并给出了辨识误差紧界的计算公式.最后利用提出的算法研究了慢时变系统的l^1鲁棒辨识问题. 相似文献
6.
Least squares estimation is appealing in performance and robustness improvements of adaptive control. A strict condition termed persistent excitation (PE) needs to be satisfied to achieve parameter convergence in least squares estimation. This paper proposes a least squares identification and adaptive control strategy to achieve parameter convergence without the PE condition. A modified modeling error that utilizes online historical data together with instant data is constructed as additional feedback to update parameter estimates, and an integral transformation is introduced to avoid the time derivation of plant states in the modified modeling error. On the basis of these results, a regressor filtering–free least squares estimation law is proposed to guarantee exponential parameter convergence by an interval excitation condition, which is much weaker than the PE condition. And then, an identification‐based indirect adaptive control law is proposed to establish exponential stability of the closed‐loop system under the interval excitation condition. Illustrative results considering both identification and control problems have verified the effectiveness and superiority of the proposed approach. 相似文献
7.
针对机载无源定位易受异常误差影响的问题,提出一种基于角度信息的鲁棒递推总体最小二乘定位(RRTLS)算法。建立机载无源定位模型,得出总体最小二乘(TLS)解,根据机载定位的实时性、低复杂度要求将其转化为加权递推形式;根据广义M估计原理构建鲁棒TLS极值准则,利用其性质将RRTLS定位问题转化为等价权函数的设计问题;验证了利用残差识别异常误差的合理性,在此基础上建立了等价权函数。仿真结果表明,不存在异常误差时,递推总体最小二乘(RTLS)算法和RRTLS算法均能较好收敛;存在异常误差时,递推最小二乘(RLS)和RTLS定位结果受到扭曲,而RRTLS算法能够获得理想的估值,具有较强的鲁棒性。 相似文献
8.
The discrete-time least squares approach is extended to the estimation of parameters in continuous nonlinear models. The resulting direct integral least squares (DILS) method is both simple and numerically efficient and it usually improves the mean-squared error of the estimates compared with the conventional indirect least squares (ILS) method. The biasedness of the DILS estimates may become serious if the sample points are widely spaced in time and/or the signal-to-noise ratio is low and so a continuous-time symmetric bootstrap (SB) estimator which removes this problem is described. The DILS, SB and ILS methods form a three-stage procedure combining the robustness and numerical efficiency of direct methods with the asymptotic unbiasedness of ILS procedures. 相似文献
9.
Recent papers on stochastic adaptive control have established global convergence for algorithms using a stochastic approximation iteration. However, to date, global convergence has not been established for algorithms incorporating a least squares iteration. This paper establishes global convergence for a slightly modified least squares stochastic adaptive control algorithm. It is shown that, with probability one, the algorithm will ensure that the system inputs and outputs are sample mean square bounded and the mean square output tracking error achieves its global minimum possible value for linear feedback control. 相似文献
10.
基于辅助模型的递推增广最小二乘辨识方法 总被引:4,自引:0,他引:4
针对有色噪声干扰的输出误差滑动平均系统, 将辅助模型与递推增广最小二乘算法相结合: 用辅助模型的输出代替辨识模型信息向量中的未知真实输出项, 用估计残差代替信息向量中的不可测噪声项, 从而提出了基于辅助模型的递推增广最小二乘辨识方法. 为了展示所提方法的特点, 文中还给出了经过模型变换的递推增广最小二乘算法. 理论分析和仿真研究表明, 提出的方法原理简单、计算量小, 可以给出高精度参数估计, 且能够用于在线辨识. 相似文献
11.
正交最小二乘是一种贪婪算法,采用逐步回归建模,每一步利用搜索算法找到最小化残差的一个回归项。将其拓展为每一步搜索多个最优的回归项,从而得到一种稀疏的回归方法,并将其应用于谐波分量提取中。仿真实验说明,新方法不仅能够较为精确地逐项估计出分量的参数,而且可以对分量个数进行有效的估计。 相似文献
12.
We study the problem of estimating an unknown deterministic signal that is observed through an unknown deterministic data matrix under additive noise. In particular, we present a minimax optimization framework to the least squares problems, where the estimator has imperfect data matrix and output vector information. We define the performance of an estimator relative to the performance of the optimal least squares (LS) estimator tuned to the underlying unknown data matrix and output vector, which is defined as the regret of the estimator. We then introduce an efficient robust LS estimation approach that minimizes this regret for the worst possible data matrix and output vector, where we refrain from any structural assumptions on the data. We demonstrate that minimizing this worst-case regret can be cast as a semi-definite programming (SDP) problem. We then consider the regularized and structured LS problems and present novel robust estimation methods by demonstrating that these problems can also be cast as SDP problems. We illustrate the merits of the proposed algorithms with respect to the well-known alternatives in the literature through our simulations. 相似文献
13.
过程系统的控制与优化要求可靠的过程数据。通过测量得到的过程数据含有随机误差和过失误差,采用数据校正技术可有效地减小过程测量数据的误差,从而提高过程控制与优化的准确性。针对传统基于最小二乘的数据校正方法:和基于准最小二乘的鲁棒数据校正方法:,分析了它们的优缺点,并提出了一种最小二乘与准最小二乘组合方法:。该方法:先采用准最小二乘估计器检测过失误差并剔除,然后再采用最小二乘估计器进行数据校正,可以综合前两种方法:各自的优点,使得数据校正结果:更加准确。将提出最小二乘与准最小二乘组合方法:应用于线性与非线性系统的数据校正中,通过校正结果:的比较说明此方法:的具有较好的过失误差检测能力和较准确的数据校正结果:。最后将此方法:应用于实际过程系统空气分离流程的数据校正中,结果:说明了此方法:的有效性。 相似文献
14.
The bias-eliminating least squares (BELS) method is one of the consistent estimators for identifying dynamic errors-in-variables systems. In this paper, we investigate the accuracy properties of the BELS estimates. An explicit expression for the normalized asymptotic covariance matrix of the estimated parameters is derived and supported by some numerical examples. 相似文献
15.
现有的l1鲁棒辨识方法依赖于观测数据自的起始时刻因而不能用来辨识时变系统, 针对该问题基于最小二乘法提出了一种l1鲁棒辨识算法. 该算法与观测窗的起始时刻无关, 可用于时变系统的辨识, 证明了当试验输入为持续激励信号时所提出的算法为本质最优算法, 进一步证明了周期持续激励序列为最优试验信号, 并给出了辨识误差紧界的计算公式. 最后利用提出的算法研究了慢时变系统的l1鲁棒辨识问题. 相似文献
16.
17.
提出一种用于高分辨率图像重建的整体最小二乘算法。在现有多数重建算法中,假设系统矩阵是精确的而误差主要源于采样图像,但实际上抖动误差也出现在系统矩阵中。该方法能同时最小化这两种误差,采用基于正则化的Rayleigh商来光滑解,用共轭梯度算法来迭代求解该正则化Rayleigh商的最小化函数。实验证明该方法对于抖动系统矩阵是稳定和精确的。 相似文献
18.
This paper focuses on the parameter estimation problems of output error autoregressive systems and output error autoregressive moving average systems (i.e., the Box–Jenkins systems). Two recursive least squares parameter estimation algorithms are proposed by using the data filtering technique and the auxiliary model identification idea. The key is to use a linear filter to filter the input–output data. The proposed algorithms can identify the parameters of the system models and the noise models interactively and can generate more accurate parameter estimates than the auxiliary model based recursive least squares algorithms. Two examples are given to test the proposed algorithms. 相似文献
19.
This paper studies the parameter estimation algorithms of multivariate pseudo-linear autoregressive systems. A decomposition-based recursive generalised least squares algorithm is deduced for estimating the system parameters by decomposing the multivariate pseudo-linear autoregressive system into two subsystems. In order to further improve the parameter accuracy, a decomposition based multi-innovation recursive generalised least squares algorithm is developed by means of the multi-innovation theory. The simulation results confirm that these two algorithms are effective. 相似文献
20.
空基伪卫星由于自身机动性以及受到诸如气流、压力、温度等外界因素的影响使得其位置存在着偏移。因此,精确确定空基伪卫星的位置是其增强现有导航系统或独立组网进行导航定位的前提。针对扩展Kalman滤波对初值的要求和最小二乘法估计性好的特点,提出了一种混合算法,该算法用逆定位原理建立伪距观测方程组并采用最小二乘法解算出初值,运用扩展Kalman滤波进行定位。仿真表明,混合算法优于最小二乘法,定位精度得到了提高。 相似文献