首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
磷系阻燃剂发展现状与趋势   总被引:1,自引:0,他引:1  
简述了我国阻燃剂的市场现状和前景,介绍了磷系阻燃剂的阻燃机理,论述了国内外磷系阻燃剂的分类、特点并介绍了该类阻燃剂的机理及研究现状和发展趋势。  相似文献   

2.
The bisphenol‐containing 4,4′‐biphenylene moiety was prepared by the reaction of 4,4′‐bis(methoxymethyl) biphenyl with phenol in the presence of p‐toluenesulfonic acid. The bisphenol was end‐capped with the cyanate moiety by reacting with cyanogen chloride and triethylamine in dichloromethane. Their structures were confirmed by Fourier transform infrared spectroscopy, 1H‐NMR, and elemental analysis. Thermal behaviors of cured resin were studied by differential scanning calorimetry, dynamic mechanical analysis, and TGA. The flame retardancy of cured resin was evaluated by limiting oxygen index (LOI) and vertical burning test (UL‐94 test). Because of the incorporation of rigid 4,4′‐biphenylene moiety, the cyanate ester (CE) resin shows good thermal stability (Tg is 256°C, the 5% degradation temperature is 442°C, and char yield at 800°C is 64.4%). The LOI value of the CE resin is 42.5, and the UL‐94 rating reaches V‐0. Moreover, the CE resin shows excellent dielectric property (dielectric constant, 2.94 at 1 GHz and loss dissipation factor, 0.0037 at 1 GHz) and water resistance (1.08% immersed at boiling water for 100 h). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
阐述了近年来国内外对无卤阻燃环氧树脂的研究情况,分别就填料型阻燃和结构型阻燃技术进行了介绍,并且简述了这两种阻燃方法对环氧树脂固化体系性能的影响。  相似文献   

4.
DOPO based flame retardants demonstrate exceptional flame retardancy efficiency when applied to epoxy resins. However, the crosslinking degree of epoxy resin may decrease due to the addition of DOPO, leading to a deterioration in flame retardancy and mechanical properties. Herein, a reactive DOPO derivative flame retardant 6-((1H-benzo[d]imidazol-2-yl) amino) dibenzo oxaphosphinine 6-oxide (BADO) was successfully synthesized, which contains multiple reactive sites, thus ensuring a higher degree of crosslinking in the system. As a result, the modified epoxy resin exhibits excellent flame retardancy. The limiting oxygen index value of the modified epoxy resins increased from 19.8% to 29.7% by adding 7.5 wt% BADO, and its UL-94 test passed V-0. Flame retardancy mechanism analysis reveals that BADO exhibits both gas-phase and condensed-phase flame retardant effects. In particular, the formation of a porous inside-char layer is a significant factor in reducing smoke release. The 7.5% BADO/EP composite exhibited a 43.2% reduction in total smoke production and a 43.6% reduction in total smoke rate compared to neat epoxy resins (EP). Furthermore, the addition of BADO slightly deteriorates the mechanical properties of the modified epoxy resin.  相似文献   

5.
环氧树脂固化物具有一系列性能优势,是重要的电子材料之一,但因其极易燃烧而存在火灾隐患。采用一类扭曲非对称结构的二氮杂萘酮型二胺和二酚型无卤阻燃固化剂,与双酚A型环氧树脂(E51)和含磷环氧树脂固化,所得固化物具有优异的热学和动态力学性能,T可达157℃,热线胀系数低;与含磷树脂固化后所得g材料的阻燃性顺利通过UL94 V-0级测试。  相似文献   

6.
An aryl phosphinate dianhydride 1,4‐bis(phthalic anhydride‐4‐carbonyl)‐2‐(6‐oxido‐6H‐dibenz[c,e][1,2]‐oxaphosphorin‐6‐yl)‐phenylene ester (BPAODOPE) was synthesized and its structure was identified by FTIR and 1H‐NMR. BPAODOPE was used as hardener and flame retardant for preparing halogen‐free flame‐retarded epoxy resins when coupled with another curing agent. Thermal stability, morphologies of char layer, flame resistance and mechanical properties of flame‐retarded epoxy resins were investigated by thermogravimetric analysis, SEM, limiting oxygen index (LOI), UL‐94 test, tensile, and charpy impact test. The results showed that the novel BPAODOPE had a better flame resistance, the flame resistance and char yield of flame‐retarded epoxy resins increased with an increase of phosphorus content, tensile strength and impact strength of samples gradually decreased with the addition of BPAODOPE. The flame‐retarded sample with phosphorus contents of 1.75% showed best combination properties, LOI value was 29.3, and the vertical burning test reached UL‐94 V‐0 level, tensile strength and impact strength were 30.78 MPa and 3.53 kJ/m2, respectively. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
综述了用于电缆料的无卤阻燃剂的种类及阻燃机理,介绍了用于电缆料的阻燃增效剂;另外,还对用于无卤阻燃剂的基础树脂的现状以及用于电缆料的聚烯烃树脂的改性方法进行了详细的阐述。  相似文献   

8.
Polymethyl(3‐glycidyloxypropyl)siloxane (PMGS) was synthesized as a flame‐retardant additive, which were cocured with diglycidyl ether of bisphenol‐A (DGEBA) using 4,4′‐diaminodiphenylsulfone as a curing agent. The structure of PMGS was confirmed through Fourier transform infrared and 1H‐NMR spectra. The cured products were characterized with dynamic mechanical thermal analysis, thermogravimetric analysis, and oxygen index analyzer. With PMGS incorporated, the cured epoxy resin showed better thermal stability, higher limited oxygen index, and higher char yield. At moderate loading of PMGS, the storage modulus and glass transition temperature of the cured epoxy resin based on neat DGEBA were obviously improved. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
采用PTA、BDO和阻燃剂三元共聚的方法合成得到了阻燃PBT共聚酯,研究表明阻燃剂降低了聚合反应速度,随阻燃剂含量的增加,影响程度加大;阻燃剂含量增加,共聚酯的极限氧指数提高,结晶性能下降,且随阻燃剂含量的增加,熔点及其熔融焓以接近线性方式减少;熔融指数分析表明共聚酯的流动性能有所降低。  相似文献   

10.
Layered double hydroxide (LDH) is a widely used flame retardant in polymer materials; however, the poor dispersion due to its high hydrophilic nature results in disappointing thermal stability and fire safety. In this work, LDH was in-situ grown on the disordered montmorillonite (MMT) nanosheets to obtain the hybrid of LDH and MMT nanosheets (LDH@MMT, simplified as LM). Various techniques, including X-ray diffraction, Fourier-transform infrared spectroscopy, field emission scanning electron microscopy, and transmission electron microscope were used to characterize the microstructure of LM. In addition, the acrylonitrile-butadiene-styrene (ABS) composite containing LM and intumescent flame retardant (IFR) was prepared, and its mechanical and flame-retardant properties were also measured. The characterization results demonstrate that the LM exhibits a periodically alternating layered structure. The Limiting Oxygen Index (LOI) of the ABS composite reaches 27.2% with a V-0 rating in the UL-94 vertical burning test, while its flexural strength and tensile strength decrease by only 17.82% and 13.45%, respectively. Furthermore, the heat release rate, total heat release, smoke production rate, and carbon monoxide production rate of the ABS composite present a significant decline in cone calorimeter tests compared with those of pure ABS. The results further indicate that the hybridization could effectively improve the flame-retardant performance of ABS composites and perform lesser impacts on their mechanical properties.  相似文献   

11.
季戊四醇磷酸酯蜜胺盐阻燃剂的合成及应用   总被引:2,自引:0,他引:2  
以磷酸、季戊四醇和三聚氰胺合成了无卤膨胀型阻燃剂季戊四醇磷酸酯蜜胺盐,并对产物进行了差热和热失重及红外分析。结果显示,该阻燃剂在266℃有一吸热分解峰,显示出较好的稳定性;根据残炭率确定的合成最佳条件为:n(磷酸)∶n(季戊四醇)∶n(三聚氰胺)=2~2.5∶1∶1.8~2.2;合成温度100~110℃;反应时间4~6 h;以此阻燃剂添加到不饱和聚酯里,添加18份时阻燃级别可达UL-V0级。该阻燃剂具有分解温度适中,阻燃效率高等优点。  相似文献   

12.
孟龙  孙宾宾 《当代化工》2014,(4):603-604,607
无卤阻燃剂中磷酸酯类化合物的研究一直是当前的研究热点,文中着重对水性聚氨酯改性提高阻燃性能的研究进行讨论,设计分析了通过FRC-6合成水性聚氨酯实现阻燃剂的性能改进,采用FRC-6替代其他小分子二醇扩链剂,可以实现合成大量的稳定的有机磷阻燃改性的水性聚氨酯;P含量的增加会降低热释放量,提高阻燃性能。这一研究对于无卤阻燃剂的改进应用具有一定的借鉴价值。  相似文献   

13.
赵成刚 《塑料科技》2007,35(10):68-72
环保型无卤阻燃热缩管以乙烯-乙酸乙烯共聚物(EVA)和低密度聚乙烯(LDPE)为基体树脂,以微胶囊红磷和氢氧化镁为阻燃剂,加入自制的增容剂、复合润滑剂以及复合抗氧剂,制备的环保型无卤阻燃热缩管的环境物质指标符合欧盟RoHS指令要求,产品性能符合UL224标准要求,达到了国外同类产品水平。自制的增容剂能够显著提高微胶囊红磷、氢氧化镁与基体树脂EVA/LDPE的相容性,产品表面光滑而且拉伸强度明显提高。  相似文献   

14.
利用线形聚二氯磷腈(PDCP)与甲醚乙二醇钠反应,合成了聚乙二醇甲醚磷腈(PMEP);采用正交实验分析了溶剂用量、反应时间、反应物配比以及提纯方法对PMEP产率和相对分子质量的影响,优选出最佳的合成工艺条件;利用红外光谱、核磁共振磷谱、差示扫描量热法等手段对合成产物进行了表征;将PMEP与粘胶纺丝原液共混纺丝制备了PMEP共混改性粘胶纤维,初步探讨了PMEP对粘胶纤维的阻燃效果。结果表明:相转变法能减少提纯过程中产物的流失,且能减少提纯分离的周期;PMEP的最佳合成工艺为PDCP与甲醚乙二醇钠摩尔比1.0∶3.0,四氢呋喃溶剂25 m L,反应温度68℃,反应时间10 h;PMEP共混改性粘胶纤维具有良好的阻燃效果,PMEP质量分数为15%时,其阻燃改性粘胶纤维极限氧指数达33%。  相似文献   

15.
A kind of intumescent ?ame-retardant curing agent (PCDSPB) was synthesised by using pentaerythritol, phosphorus oxycholoride, cyclohexane-1,3-diyldimethanamine (1,3- BAC) as raw materials and the structure was characterised by FTIR and MS. The composite materials were investigated by using TG, TG-FTIR, LOI, UL-94, SEM, and CCT. The results show that the ?lling of PCDSPB can improve the ?ame resistance of EP composites. When the phosphorus content of the composite system was 1.74 wt-%, the initial weight loss temperature was 299°C and the char yield was 26.3% at 600°C. Tensile strength was 35.4 MPa, impact strength was4.3 kJ m?2, LOI was 27.9, and the UL94 passed V-0 level. In the CCT, the peak heat release rate reduced to 276.0 kW m?2(EP-2) from 622.8 kW m?2 (EP-0), the total heat release decreased from 121.8 MJ m?2 (EP-0) to 89.5 MJ m?2 (EP-2). Therefore, the PCDSPB is a good intumescent ?ame-retardant curing agent for EP.  相似文献   

16.
Epoxy resins are, due to their excellent properties (such as chemical resistance, dimensional stability, and heat resistence), widely used in practice. The basic principle of curing epoxy resins with a hardener containing multiple amino groups is the crosslinking reaction between active hydrogen atoms in the hardener and the oxirane groups in the epoxy resin. This study deals with the synthesis and characterization of hexachloro‐cyclo‐triphosphazene derivative and its subsequent use for curing epoxy resins. The new hardener was prepared from hexachloro‐cyclo‐triphosphazene by nucleophilic substitution with isophorone diamine and its curing capability was compared with original isophorone diamine. The prepared derivative hexaisophorone diamino‐cyclo‐triphosphazene (HICTP) provided advantages over conventional curing system, as it improved mechanical properties as well as the flame resistance. Testing of the cured epoxy resin during burning was carried out using dual cone calorimeter, which enables more extensive monitoring of parameters in comparison with testing using oxygen index that has been used in many publications. The epoxy resin cured with the prepared phosphorus containing HICTP exhibits lower values for total heat release, amount of smoke released and oxygen consumed, which may cause a slower flame spread. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42917.  相似文献   

17.
综述了丙烯酸系树脂的阻燃机理及当前国内外对其阻燃的研究现状和发展趋势。指出,丙燃酸系树脂阻燃中无机阻燃剂氢氧化铝、聚磷酸铵用得较多;有机阻燃剂的有机卤-磷系阻燃剂集有机卤系和有机磷系阻燃剂的优点于一身,在丙烯酸系树脂阻燃中用量最大。今后,添加型阻燃剂将继续被大量使用;反应型阻燃剂因较有前途,将逐渐受到重视;高效、环保的阻燃体系将倍受关注。  相似文献   

18.
从绿色环保的角度出发,对比了含卤阻燃剂对环境的危害和无卤绿色阻燃剂的低毒、低烟和高效阻燃的特点,介绍了磷系阻燃剂、膨胀型阻燃剂、硅系阻燃剂、无机金属阻燃剂以及生物基阻燃剂的合成方法及其在相关高分子材料中的应用研究进展。分析表明,磷氮等复配阻燃剂和合成新型的P,N,Si等多元素一体的阻燃剂,不仅阻燃效果好,对基体材料的其它性能影响也小。尤其是生物基阻燃剂,满足对绿色环保和可持续发展的需求,将成为未来阻燃剂开发的热点。  相似文献   

19.
综述了最近印制电路板用无卤无磷阻燃型环氧树脂的研究开发现状。重点介绍了新型的含氮、含硅和本质阻燃环氧树脂,并对其发展前景进行了展望。  相似文献   

20.
To study flame retardant mechanism of epoxy resin (EP) by octaphenyl silsesquioxane and 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide, an experimental method is set up to investigate the residue of the EPs, which is extinguished during the cone calorimeter testing at different times. The chemical structures of the residues are investigated by the FTIR and XPS. The breakdown of EPs network and formation of new crosslinking structure are supported by the FTIR analysis. The changes of C and O concentrations in the condensed phase during the combustion are investigated by XPS in detail. Moreover, formation of organic carbon is uncovered by the plasmon loss curves based on XPS that could track the carbon crosslinking. These results exhibited a whole degradation and charring process of EP during the combustion: degradation of EP chain, more crosslinking charring, and thermal oxidation of the char. Furthermore, a program of combustion and degradation process of EPs is described in this research. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4119–4128, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号