首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高突矿井瓦斯抽采是治理工作面隅角瓦斯超限的重要手段,各抽采方式布置层位不同,其抽采效果存在明显差异,研究协同抽采各抽采方式的最优布置层位具有重要意义。为提高高抽巷抽采效率实现瓦斯精准抽采,基于“椭抛带”理论,运用Fluent数值模拟软件对协同抽采各抽采方式的布置层位进行模拟研究,分析各布置条件下工作面隅角瓦斯浓度,确定最优布置层位。模拟结果表明协同抽采中各抽采方式布置层位为:高抽巷最优平距25 m,最优垂距30 m,定向长钻孔最优平距在10~20 m,最优垂距在11~21 m。通过对单一抽采与协同抽采进行对比分析,协同抽采中回风侧快速提升区跨度明显增大,使得回风侧经上隅角涌入工作面的瓦斯强度降低,隅角瓦斯得到进一步控制。协同抽采较好解决了工作面回风侧风流引起的相对负压造成上隅角瓦斯大量聚集的问题,隅角涡流所引起的瓦斯聚集现象在长钻孔抽采下逐步消失。优化后的布置参数进行现场应用后,试验工作面在生产期间高抽巷平均抽采纯量为64.79 m3/min,占瓦斯涌出量的79.91%,定向长钻孔平均抽采纯量为9.68 m3/min,减小了风排瓦斯的压力,上...  相似文献   

2.
为了解决某矿3307工作面采空区瓦斯抽采效率低、工作面上隅角瓦斯易超限问题,提出了高位钻孔抽采采空区瓦斯方法,结合数值模拟分析得出高位钻孔能改变采空区流场,有效抑制工作面和上隅角瓦斯积聚。研究结果表明,采用高位钻孔抽采采空区时,抽采负压和钻孔布置层位不宜无限放大,当抽采负压取值为20 kPa、钻孔布置位置在工作面上方30 m时,抽采的性价比最高。  相似文献   

3.
为解决高瓦斯矿井采空区上隅角瓦斯超限问题,基于回采工作面回采过程中顶板破坏规律,结合顶板高位定向钻孔抽采采空区和上隅角瓦斯治理技术原理,提出采空区顶板高位定向钻孔差异化布置。通过数值模拟寺河矿E5302工作面顶板破坏规律,得到距回风侧煤壁90 m范围内不同位置张拉破坏高度关系式,为高位定向钻孔在回采面回风侧横向一定范围内差异化精准布置提供参考依据,确定采空区顶板高位定向钻孔布置层位为距顶板垂直距离30~45 m;现场试验期间,差异化布置顶板高位定向钻孔抽采瓦斯浓度高、流量稳定,整体抽采效果较好,有效抽采瓦斯时间达50 d以上,在抽采稳定时期钻场钻孔平均纯瓦斯抽采量达15.5 m~3/min,上隅角瓦斯体积分数控制在0.44%左右,保障了矿井回采期间安全。  相似文献   

4.
为研究高抽巷抽采负压对治理采空区瓦斯的影响并寻求最优抽采参数,以赵庄矿1309工作面为背景,通过数值计算得到布置垂高应为25m,平距应为20m。通过FLUENT软件对进行高抽巷不同抽采负压条件下的数值模拟,并采用UDF程序定义采空区参数使模拟结果接近实际。模拟结果表明:在无抽采模型下,工作面上隅角瓦斯浓度最高可达18%,影响安全回采。高抽巷抽采条件下增大抽采负压,采空区瓦斯浓度降低,上隅角附近的低瓦斯浓度区域由不存在逐渐扩大。高抽巷瓦斯体积分数及抽采纯量在抽采负压高于20kPa后增量趋于平缓。为保证抽采效果同时避免采空区漏风,确定合理抽采负压为20kPa。现场实测高抽巷瓦斯抽采纯量平均为43.93m/min,与模拟结果基本吻合。  相似文献   

5.
高位裂隙带钻孔是解决工作面上隅角瓦斯超限的常用方法,高位钻孔抽放最主要的影响因素是合理层位选择,其钻孔参数应根据采空区冒落带高度来设计。以霍尔辛赫煤矿3210综采工作面为试验对象,通过理论分析、数值模拟和现场考察等手段,分析确定采空区冒落带高度,依据冒落带高度设计高位裂隙带钻孔终孔层位,优化采空区抽采工艺,提高瓦斯抽采效果,有效解决工作面上隅角瓦斯超限问题。  相似文献   

6.
针对崔家沟煤矿2303综放工作面瓦斯涌出量高易造成瓦斯超限的安全难题,应用采动裂隙椭抛带理论,在分析特厚煤层综放开采覆岩破坏特征的基础上,采用物理相似模拟和UDEC数值模拟试验研究了采空区覆岩"三带"演化规律,建立了采动裂隙椭抛带数学模型,确定出了覆岩裂隙瓦斯抽采有利区,提出了低-中-高位钻孔相组合的瓦斯抽采方案,并进行了工程应用。结果表明:2303综放工作面垮落带高度为33 m,断裂带高度为110 m,距离煤层底板35 m以上55 m以下与外椭抛面交集的范围为瓦斯抽采的有利区域;通过低-中-高位钻孔抽采方案的实施,上隅角瓦斯浓度小于0.6%,回风巷瓦斯浓度小于0.5%,有力保障了工作面的安全高效回采。  相似文献   

7.
为解决综采工作面上隅角瓦斯积聚超限的问题,提出了超大直径钻孔技术来治理采空区上隅角瓦斯超限问题,阐述了超大直径钻孔治理上隅角瓦斯技术原理。以曹家山矿80103工作面为工程背景,采用大直径钻孔瓦斯抽采技术对采空区上隅角瓦斯进行抽采,并利用数值模拟软件对不同抽采负压及钻孔直径下钻孔瓦斯流量进行分析,确定最佳抽采负压为-30kPa,最佳钻孔直径为130mm。确定施工参数后对大直径钻孔抽采瓦斯抽放进行工业化试验发现,当使用大直径钻孔进行上隅角瓦斯抽采时,上隅角瓦斯浓度维持在0.2%,抽放效果较佳。并对其抽采效果进行验证,为矿井地质条件相类似工作面上隅角瓦斯治理提供参考与借鉴。  相似文献   

8.
采空区顶板裂隙带内富集的游离瓦斯是制约工作面安全回采的重要因素之一,而当前对采空区裂隙带瓦斯富集区认识模糊,造成工作面采空区瓦斯治理不精准且低效。以新安煤矿回采工作面为背景,结合工作面顶板岩性特征、采掘情况以及低位钻场高位孔瓦斯抽采参数情况,分析了O型圈瓦斯富集区层位及水平分布,并采用近水平高位钻孔进行了试验验证。研究结果表明,回采工作面裂隙带瓦斯富集区分别位于O型外卸压圈侧和O型内卸压圈侧,且2个瓦斯富集区存在5 m左右的高差和20 m的水平差距。该结论可对采空区瓦斯进行精准治理,实现高浓度、高纯量的采空区瓦斯治理效果。  相似文献   

9.
针对下石节煤矿222工作面开采过程中双重卸压造成工作面瓦斯涌出量高导致瓦斯超限的安全难题,结合采动裂隙"O"型圈和"环形裂隙体"理论,在分析厚煤层综放开采双重卸压采动覆岩破坏特征的基础上;采用相似模拟和数值模拟研究了双重卸压工作面开采采空区覆岩裂隙演化模型,确定了裂隙场和应力场演化反馈机制,依据裂隙密度,将覆岩裂隙场划分为贯通渗透区、纵向渗透区和水平渗透区;结合Fluent模拟瓦斯流场运移机理,将双重卸压采空区覆岩裂隙场+应力场+瓦斯渗流场相互耦合,进一步补充了采空区瓦斯流场规律:低位低浓度瓦斯流动带和高位高浓度瓦斯流动圈;提出了双重卸压采空区卸压瓦斯治理方式为复合采空区高位定向钻孔瓦斯抽采方案,并进行了工程应用。结果表明:确定卸压瓦斯抽采富集区域范围为回风侧偏向工作面宽度40 m,距离煤层顶板60.8 m以上150 m以下范围内;通过在复合采空区将高位定向钻孔瓦斯抽采方案的实施,上隅角瓦斯浓度低于0.8%,工作面及回风巷瓦斯浓度低于0.3%。  相似文献   

10.
为了分析采空区高位定向钻孔设计抽采参数对抽采效果的影响,运用统计方法研究了矿井53个高位定向钻孔的布置参数和抽采数据,确定了合理的钻孔布置层位和平距。以王家岭煤矿12311为试验工作面,试验了不同抽采负压和钻孔孔径下高位定向钻孔的抽采效果,综合判定了高位定向钻孔的最佳抽采负压和合理钻孔孔径,并对高位定向钻孔设计和抽采参数进行了优化,对优化后的钻场抽采效果进行了试验和分析。结果表明:高位定向抽采钻孔的合理布置层位为25~45m,平距为20~60m,最佳抽采负压为22.7kPa,最优孔径为133mm,优化后瓦斯抽采率提高15.5%,有效降低了回风流瓦斯浓度。  相似文献   

11.
为了分析采空区高位定向钻孔设计抽采参数对抽采效果的影响,运用统计方法研究了矿井53个高位定向钻孔的布置参数和抽采数据,确定了合理的钻孔布置层位和平距。以王家岭煤矿12311为试验工作面,试验了不同抽采负压和钻孔孔径下高位定向钻孔的抽采效果,综合判定了高位定向钻孔的最佳抽采负压和合理钻孔孔径,并对高位定向钻孔设计和抽采参数进行了优化,对优化后的钻场抽采效果进行了试验和分析。结果表明:高位定向抽采钻孔的合理布置层位为25~45m,平距为20~60m,最佳抽采负压为22.7kPa,最优孔径为133mm,优化后瓦斯抽采率提高15.5%,有效降低了回风流瓦斯浓度。  相似文献   

12.
根据象山矿井5#煤层煤系地层赋存条件,分析了采空区瓦斯富集区层位,设计施工5个顶板高位定向长钻孔进行采空区瓦斯抽采治理。现场抽采结果表明:顶板高位定向长钻孔布置层位高度20~22m,水平内错距离0~45m较为合理;通过进行5#煤层顶板定向长钻孔抽采技术应用,工作面日产量大幅提升,而工作面上隅角瓦斯浓度由此前长期维持在0.7%降至0.4%左右,有效遏制了上隅角瓦斯超限事故,实现了取消高位裂隙钻孔和采空区埋管抽采的目标。  相似文献   

13.
为研究采动覆岩裂隙演化及其中瓦斯的运移规律,通过物理相似模拟及数值模拟发现,煤层开采后采动覆岩裂隙形态可用椭抛带来表征。基于岩层控制关键层理论,建立了考虑采高及第一亚关键层与煤层顶板间距的采动裂隙椭抛带动态演化数学模型。运用环境流体力学,传质学,渗流力学,采动岩体力学等理论,得到采动煤体应力与卸压瓦斯渗流,纵向破断裂隙区瓦斯升浮,以及横向离层裂隙区瓦斯扩散等方程,构建出椭抛带中卸压瓦斯渗流-升浮-扩散综合控制模型。分析了椭抛带卸压瓦斯抽采机理,提出相应的煤与甲烷共采技术。通过山西天池煤矿抽采卸压瓦斯的现场实践,说明采动裂隙椭抛带是卸压瓦斯的储运区,将瓦斯抽采系统布置其中,可取得良好效果。  相似文献   

14.
许疃煤矿针对大采高综放工作面瓦斯治理问题,采用了工作面顺层钻孔预抽本煤层瓦斯、顶板高位上向穿层钻孔抽采大采高工作面上邻近层瓦斯、顶板高位走向钻孔抽采本煤层同时拦截抽采上邻近层卸压瓦斯的综合瓦斯抽采技术。针对大采高综放工作面顶板高位走向钻孔布置层位的选择,通过相似模拟试验、关键层理论分析和UDEC软件模拟研究许疃煤矿大采高工作面顶板冒落规律,寻找大采高采场上覆岩层中裂隙位置和顶板瓦斯富集区;以此确定顶板高位钻孔的相关抽放工艺参数,为大采高工作面采空区高位瓦斯抽放钻孔的设计提供了理论依据。同时为大采高工作面上邻近层卸压瓦斯抽采钻孔的设计提供了理论指导。  相似文献   

15.
为了研究采动覆岩中卸压瓦斯的运移规律,以采动裂隙椭抛带理论为基础,构建采动卸压瓦斯优势通道采高效应的空间形态模型,针对山西和顺某高瓦斯矿井主采工作面,运用物理相似模拟的方法,揭示综采工作面采动卸压瓦斯运移优势通道的采高控制机理,以此为依据,在现场实施高位钻孔抽采卸压瓦斯试验。研究结果表明:在上覆岩层中,优势通道左右边界离层量发生明显突变。随采高的增加,优势通道高度分别发育至距离煤层底板29.5,48,60 m,而宽度则从28 m变化到33 m。离层率的峰值距煤层底板30 m上移至60 m,贯通度明显增大。6 m采高优势通道的分形维数分别是4,2m采高的1.07,1.23倍,呈现着升维的趋势。在现场高位钻孔试验中,对工作面采高不同时的高位钻孔参数进行优化调整,得到高位钻场抽采瓦斯占绝对瓦斯涌出总量的49.94%~89.88%,并且使得上隅角及回风巷平均瓦斯体积分数维持在0.27%以下及0.32%以下,从而保证工作面安全高效的回采。研究结果为采动覆岩卸压瓦斯富集区的识别提供一定的理论基础。  相似文献   

16.
《煤炭技术》2021,40(4):69-73
针对黄岩汇煤矿"U"型通风综采工作面高抽巷层位高、错距大,导致的上隅角瓦斯超限问题,提出了高抽巷联合走向倾斜高位钻孔立体化抽采技术来治理上隅角瓦斯涌出。以黄岩汇煤矿15108、15105综采工作面为研究对象,现场跟踪考察了高抽巷和高位钻孔联合抽采的合理布孔层位及上隅角瓦斯治理效果。研究表明:高抽巷层位在50~60 m时,抽采瓦斯纯量稳定,平均抽采纯量可达到80 m3/min,可以有效地阻截邻近层瓦斯涌向采空区,降低采空区瓦斯总量。走向倾斜高位钻孔作为高抽巷的补充措施,其层位布置在煤层顶板以上25~30 m时,能够较好地发挥对采空区上隅角瓦斯流场的干预作用,达到较好的瓦斯防治效果。在联合层位下,高抽巷和高位钻孔联合抽采作用下,能够将上隅角瓦斯浓度控制在0.3%以下,该技术对相似条件下上隅角瓦斯治理具有指导作用。  相似文献   

17.
针对邓家庄矿低透气性煤层预抽效果不佳、造成U通风工作面上隅角瓦斯频繁超限的问题,基于采空区卸压瓦斯流动效应的分析及"三带"经验公式,结合回采过程中对钻孔抽采效果的考察,得出了适合5200工作面回巷高位钻孔最佳层位布置参数,解决回采过程中上隅角瓦斯超限的难题。  相似文献   

18.
孙海峰  孙海林 《煤炭技术》2020,39(7):138-142
针对高瓦斯综放工作面回采工程中上隅角瓦斯超限问题,以华彬煤业蒋家河煤矿203工作面为研究背景,提出顶板走向外错高抽巷配合穿层钻孔抽采采空区瓦斯技术。通过理论计算和数值模拟结果,确定了高抽巷合理层位布置,根据现场抽采参数及效果分析,外错高抽巷配合穿层钻孔抽采稳定后,高抽巷穿层钻孔抽采瓦斯平均浓度为26%,上隅角瓦斯浓度平均值稳定到0.45%左右,回风巷口瓦斯浓度平均值稳定到0.42%,解决了该矿井上隅角及回风巷口瓦斯超限难题,确保了矿井的安全生产。同时,为类似条件综放工作面采空区瓦斯治理具有一定的理论指导意义和实用参考价值。  相似文献   

19.
阳煤集团兴裕煤矿为高瓦斯矿井,为有效治理采空区瓦斯,设计在15103工作面进行顶板长钻孔抽采瓦斯试验,通过理论分析计算、数值模拟等方法,确定走向长钻孔的垂直层位为25 m,距15103回风巷的水平距离为15~45 m,最佳抽采负压为20 kPa。验证了走向长钻孔代替高抽巷的可行性,现场应用期间,对比15101工作面高抽巷瓦斯抽采效果可知,15103工作面采用走向长钻孔抽采瓦斯应用效果更优。  相似文献   

20.
周湘龙 《煤》2021,30(3):55-57
为有效治理18303工作面采空区的瓦斯,采用Fluent数值模拟软件进行高抽巷和上隅角埋管抽采下采空区瓦斯分布规律的模拟分析,基于模拟结果确定采用高抽巷+上隅角埋管的方式进行采空区瓦斯治理,通过数值模拟进行高抽巷及埋管抽采合理参数的分析,结合工作面特征确定高抽巷与回风巷平距P=17 m,与煤层顶板垂距C=36 m,埋管抽采的合理间距为20 m,并对抽采方案进行具体设计,抽采方案实施后进行验证分析。结果表明:抽采方案实施后,上隅角瓦斯浓度最大为0.8%左右,抽采效果显著,采空区瓦斯得到了有效治理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号