首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用等离子喷涂的方法在高温合金圆筒上制备热障涂层,通过红外线辐照圆筒外部对试件进行加热以及内部通冷却空气强制冷却的方法对热障涂层系统进行了热循环失效试验。利用有限元工具ABAQUS对热障涂层系统中的瞬时温度场与应力场进行了计算以分析热障涂层的失效原因。计算结果表明,试样处于稳态最高温度时以及降温过程开始的很短时间内,陶瓷层中出现较大的周向拉应力,该应力将导致热障涂层出现表面垂直裂纹;陶瓷层与粘接层界面的径向应力不足以引起界面的开裂,界面的起裂来源于垂直裂纹出现后所带来的边缘效应。  相似文献   

2.
采用PASCAN-64型水浸超声设备并配合扫描电镜对8wt %Y2O3-ZrO2(8YSZ)双层热障涂层热震过程中内部组织结构演变进行了检测。结果表明, 当超声波从垂直陶瓷层方向入射至粘结层反射所获得的回波信号影像主要反映了陶瓷层组织结构演变, 从垂直基底方向入射至粘接层/陶瓷层界面处反射所获得的回波信号影像主要反映了热生长氧化物层组织结构演变, 从垂直陶瓷层方向透射整个试片所获得的回波信号影像综合反映了整个涂层组织结构演变。当陶瓷层中均匀分布着孔隙率<11%、最大横向尺寸<50 μm的孔隙以及热生长氧化物层主要为致密的α-Al2O3时, 回波信号的幅值dB<0, 反映在影像中的信号分布均匀, 表明涂层处于良好状态。当陶瓷层中均匀分布着孔隙率>44%、最大横向尺寸>100 μm的孔隙以及热生长氧化物层主要为具有稀疏结构且厚度>5.2 μm的Cr、Co氧化物时, 回波信号的幅值dB>0的区域连接成片, 则预示着涂层即将失效或已失效。可见, 水浸超声技术能够较准确地反映热障涂层内部组织结构演变, 是一种较好的热障涂层内部缺陷的无损检测方法。  相似文献   

3.
王力  王海斗  底月兰  赵运才  董丽虹  李帅 《材料导报》2021,35(17):17143-17149
热障涂层因优异的耐高温、耐磨损和耐腐蚀性等优点,被广泛应用在航空发动机等热端部件表面.热障涂层作为零件表面的服役载体,在外界热腐蚀、热梯度应力和机械载荷应力的作用下,易出现表面开裂及界面涂层剥落,这是限制热障涂层长时间使用的瓶颈问题.热障涂层由基体、粘接层、陶瓷层构成,涂层材料特性不同,界面处应力应变分布也不同,在外界载荷条件下,涂层与基体如何实现协同变形,应力如何传递等问题目前尚无明确解释.因此本文主要针对外加载荷作用下,热障涂层内部的应力传递及界面的应力分布问题进行研究.总结当前热障涂层的弹塑性应力模型和损伤应力模型,获得涂层界面应力分布规律,即弹塑性变形阶段,涂层界面应力于一端发生应力集中,并且基体与粘接层界面应力大约是陶瓷层与粘接层界面应力的四倍.随着载荷的增加,涂层表面损伤加剧,其剪滞模型的界面正应力更加符合四分之一椭圆函数,界面剪切应力呈反对称分布,应力分布特征为研究热障涂层在外载条件作用下对裂纹损伤演化行为的影响提供理论依据.  相似文献   

4.
等离子热障涂层构件高温热疲劳寿命预测研究   总被引:1,自引:0,他引:1  
针对等离子热障涂层构件的变形特点,在总结热障涂层热疲劳寿命相关文献研究成果的基础上,合理设计了平板和圆管试样的高温氧化与热疲劳试验。根据菲克定律,结合高温氧化实验数据建立粘接层Al贫化的数学模型。把粘接层Al浓度作为耦合氧化损伤的控制参量引入寿命预测模型,建立氧化损伤和热疲劳损伤耦合作用的等离子热障涂层寿命预测模型。寿命预测结果表明该寿命预测模型合理、方法可行。  相似文献   

5.
一种新型CMAS耦合条件下热障涂层热循环实验方法   总被引:1,自引:0,他引:1  
提出一种高温度梯度、燃气加热和CMAS(CaO-MgO-Al2O3-SiO2)沉积条件下热障涂层热循环实验方法,并对1200℃下CMAS沉积物对等离子喷涂热障涂层过早失效的影响因素进行讨论和分析。结果表明:无CMAS耦合条件下,热障涂层热循环寿命为573次;CMAS耦合条件下,热障涂层热循环寿命降低至70次。CMAS渗入会导致陶瓷层表层产生致密层和横向微裂纹增多。CMAS耦合条件下,热障涂层的失效以陶瓷层逐层剥离为主。  相似文献   

6.
热障涂层的残余应力是影响其服役寿研究不多.在45钢基体上,用超音速火焰喷涂NiCocrAlY打底层,再用大气等离子喷涂ZrO2-8%(质量分数)Y2O3(8YSZ)工作层,制备了纳米结构与传统结构2种类型的热障涂层(TBC).采用SEM、XRD对这2种涂层的粉末及涂层进行了组织结构分析,用纳米压痕仪测得了2种涂层的弹性模量.用X射线衍射应力测试仪测得了2种涂层的表层残余应力.结果表明:喷涂工艺参数相同条件下,对于打底层及工作层的厚度均相同的2种涂层,纳米结构热障涂层的表层残余应力比传统结构热障涂层约低24.7%;相同打底层的纳米结构热障涂层表层残余应力随着陶瓷层厚度增加而增加,陶瓷层厚度在240 um以下时,表层为残余压应力;厚度超过300 um时,表层为残余拉应力.最后提出了相应的物理力学模型.  相似文献   

7.
高炉风口上超音速火焰喷涂金属-陶瓷梯度层的可行性   总被引:2,自引:0,他引:2  
在高炉风口表面制备一层适宜的金属-陶瓷梯度热障涂层,是提高风口寿命的一种有效的方法.本文旨在验证在风口上制备金属-陶瓷梯度保护层,提高高炉风口寿命的可行性.通过大型的有限元仿真软件AN-SYS,模拟分析了在紫铜表面喷涂陶瓷热障层的隔热效果,并且探讨了HVOF涂层的性能.结果发现,仅仅0.4 mm厚的ZrO2涂层就可以使铜基体温降200℃左右,而且超音速火焰喷涂打底的金属-陶瓷涂层的抗氧化性、热震性优于其他喷涂方法,这表示能够从材料和工艺两方面解决风口喷涂陶瓷层易脱落的问题.证明了在风口上喷涂金属-陶瓷梯度热障涂层的可行性以及利用HVOF打底层制备金属-陶瓷热障层的优势.  相似文献   

8.
采用真空电弧镀设备制备热障涂层(TBCs)中的NiCrAlYSi金属粘结层,采用电子束物理气相沉积工艺(EB-PVD)制备YSZ陶瓷层,利用带能谱仪的扫描电子显微镜对沉积态和热循环损伤后的热障涂层试样的形貌、组织结构以及元素成分进行分析,研究热障涂层从热循环初期到失效的过程中层间损伤及元素扩散行为.结果表明,随着热循环...  相似文献   

9.
李伟信  张跃 《功能材料》2004,35(Z1):1675-1678
作为进行热障涂层结构设计和制备参数设计的准备,本文在热障涂层寿命预测系统(本实验室研发)的基础上,研究开发了热障涂层寿命优化平台,对热障涂层的结构参数和制备参数进行了优化.制备参数主要包括热障涂层预氧化时间和粘结层粗糙度,热障涂层的结构参数包括了陶瓷层模量、陶瓷层厚度和粘结层厚度.  相似文献   

10.
为了研究航空发动机中涡轮叶片表面的热障涂层对辐射光谱的反射特性,本文使用真空电弧镀法在不锈钢基体上分别制备了NiCrAlYSi和NiCoCrAlYHf两种热障涂层的粘结层,并随后使用电子束物理气相沉积(EB-PVD)法制备了ZrO_2·Y_2O_3(YSZ)热障涂层的陶瓷面层,最后利用紫外-可见-近红外分光光度计测定了常温下热障涂层在0.3μm~2.5μm波段的反射率光谱并进行了分析研究。结果表明:金属粘结层和陶瓷面层厚度均相同时,不同的粘结层材料对热障涂层的光谱反射率影响不大,整个波段内NiCrAlYSi/YSZ和NiCoCrAlYHf/YSZ涂层的光谱反射率接近。当粘结层NiCrAlYSi的厚度相同,面层YSZ的厚度分别为20μm、100μm、170μm三种不同厚度时,热障涂层的光谱反射率表现出不同的特性,在0.3μm~0.45μm波段,厚度为20μm的YSZ的试样因表面呈蓝紫色反射紫光能力最强,而灰白色的其他两个试样反射紫光能力接近;在0.45μm~2.5μm波段,YSZ涂层厚度与光谱反射率正相关,涂层厚度越厚光谱反射率越高。通过调整电子束物理气相沉积工艺制备了YSZ微叠层,与相同厚度的传统柱状晶的YSZ相比,YSZ微叠层的光谱反射率提高了约一倍。  相似文献   

11.
用等离子喷涂方法在合金圆柱体上制备了热障涂层,并用水冷的方法进行了热冲击实验,试样的失效现象为轴向的开裂和剥落.利用有限元分析工具对热障涂层的热冲击进行模拟,通过对涂层内部应力随时间分布的分析发现:热冲击过程中陶瓷层表面的周向应力随着时间由拉转变为压,冷却初期陶瓷层的周向拉应力值较大,超过了陶瓷层的抗拉强度,因而淬冷初期的周向应力是导致轴向裂纹萌发的主要原因;陶瓷层与粘结层接触面上的径向拉应力与粘结层的氧化生长引起界面开裂;轴向裂纹和界面开裂共同导致陶瓷层的剥落.  相似文献   

12.
为提高铜基体上热障涂层的工作温度和寿命,分别采用超音速火焰喷涂(HVOF)和等离子喷涂(APS)制备NiCrAlY粘结层,采用等离子喷涂制备ZrO2-8%Y2O3陶瓷面层.用拉伸试验测试了热障涂层的结合强度,利用SEM分析了拉伸断口的成分分布和微观形貌.研究表明,用HVOF制备粘结层的热障涂层的结合强度为47.9 MPa,用APS制备粘结层的热障涂层的结合强度为31.2 MPa.与等离子喷涂制备粘结层相比,采用超音速火焰喷涂制备粘结层可明显提高ZrO2陶瓷涂层的结合强度.  相似文献   

13.
本文采用真空电弧镀技术(AIP)在DZ408高温合金基体上沉积HY3(NiCrAlYSi)金属粘结层,采用电子束物理气相沉积技术(EB-PVD)在HY3粘结层上沉积YSZ陶瓷面层,研究了热障涂层的抗冲蚀性能。对于沉积热障涂层的试样进行了抗冲蚀试验,来评价其抗冲蚀性能,通过扫描电镜(SEM)分析冲蚀前后的试样显微形貌,用X-射线衍射仪分析涂层的相结构,通过质量冲蚀率对涂层抗冲蚀性能进行表征。试验结果表明在相同冲蚀条件下,TBC涂层冲蚀率随冲蚀时间的增加而增加;涂层经光饰处理后降低了TBC的表面粗糙度,提高了TBC的抗冲蚀能力。  相似文献   

14.
涡轮叶片的热障涂层技术是保障和提升航空发动机性能的关键技术之一,涡轮叶片的工作环境要求热障涂层需要具备隔热性能好、热膨胀系数与基材相匹配、抗氧化性能好、抗熔盐腐蚀性能好等一系列特点,这对热障涂层的材料、结构以及制备工艺提出了巨大的挑战,是当前航空发动机领域的热点研究之一。本文对构成热障涂层的金属粘结层和陶瓷层材料,以及热障涂层体系结构的研究现状做了详细介绍,并简要介绍了常用的热障涂层制备方法,展望了金属粘结层和陶瓷层材料体系和制备技术的发展趋势,以期为未来航空发动机涡轮叶片热障涂层体系的构建提供有益参考。  相似文献   

15.
热障涂层已广泛用于燃气发动机燃烧室等高温零部件上。纳米热障涂层韧性改善,厚度可以增加,能够提高零部件使用温度和使用寿命。首先利用低压等离子体在镍基体上喷涂制备NiCoCrAlYTa金属中间结合层和大气等离子体喷涂制备Y_2O_3部分稳定的ZrO_2纳米陶瓷面层,然后将纳米氧化锆热障涂层样品在大气中于1050~1250℃温度范围内煅烧处理2~20h。通过扫描电镜和X射线衍射仪分析纳米氧化锆热障涂层高温煅烧前后的组织结构变化和相组成变化,并与常规微米氧化锆热障涂层进行比较。研究结果表明:经高温煅烧后,纳米氧化锆热障涂层中晶粒大小和在陶瓷面层/金属中间结合层界面上形成的TGO的厚度随煅烧温度升高和时间的延长而增大;纳米热障涂层中TGO的增长速度比常规微米热障涂层快;纳米热障涂层经高温煅烧空气中冷却后,主要由四方相组成;与常规微米热障涂层的相组成比较,纳米氧化锆热障涂层中的四方相为低稳定剂四方相。  相似文献   

16.
喷涂     
9310035商用燃气轮机的陶瓷热障层-MeierSM.JOM,1991(43):50(英文) 论述了燃气轮机用陶瓷热障层的历史、现状和未来,强化了等离子喷镀和电子束物理气相沉积的氧化忆稳定的[7%(wt)Y:03]氧化错系涂层。最新进展包括在热障层剥落寿命、  相似文献   

17.
等离子喷涂热障涂层隔热性能分析方法   总被引:2,自引:1,他引:2  
热障涂层材料已成为现代高性能航空发动机的关键材料,而隔热性能一直是评价热障涂层性能的一个重要指标。首先基于傅里叶导热定律,推导出一维稳态温度场的解析表达式,并讨论了陶瓷层厚度、陶瓷层上表面工作温度和金属基底下表面工作温度对热障涂层系统隔热性能的影响。设计了一种比较新颖的实验测试方法,成功实现了对热障涂层系统内部不同位置的温度进行实时测试和保存实验数据。结果表明,各个温度采集点的实验测试结果与理论预测结果吻合很好,说明提出的实验测试方法可以有效评估不同类型的热障涂层材料体系的隔热性能。  相似文献   

18.
热障涂层的研究进展与发展趋势   总被引:2,自引:0,他引:2  
热障涂层一般由金属粘结层和具有低热导率的陶瓷顶层组成,应用于涡轮发动机的热端部件可显著提高其使用温度,延长部件的使用寿命,提高发动机的效率.综述了热障涂层的成分选择、制备方法及等离子喷涂和电子束物理气相沉积2种热障涂层的典型结构,分析了热障涂层的剥落失效机理,并简单介绍了热障涂层的寿命预测模型和隔热特性的研究.  相似文献   

19.
本文通过固相反应合成LaMgAl11O19热障涂层新材料,用喷雾干燥的方法制备粉末,用等离子喷涂方法制备LaMgAl11O19/YSZ双陶瓷层热障涂层,通过热循环实验测试了涂层的热循环性能,并分析了涂层失效机理。研究结果表明LaMgAl11O19/YSZ双陶瓷层热循环寿命比8YSZ的热循环寿命长得多,是一种非常有应用前景的热障涂层新材料。  相似文献   

20.
为了提高WC-12Co涂层质量,采用曲面响应法对等离子喷涂WC-12Co涂层的工艺参数进行优化,以涂层显微硬度为评价指标,设计了以电流、氩气流量和喷涂距离三因素的Box-Behnken实验模型.利用方差分析三因素的显著性及交互作用,采用BP神经网络建立3×9×1的神经网络模型,并与回归模型预测结果进行比较.通过实验方法对优化参数进行验证,同时分析了不同喷涂距离对涂层组织与性能的影响.研究表明:回归模型复相关系数R2为0.979 9,BP神经网络的复相关系数R2为0.999 1;神经网络的平均相对误差为0.46%,低于多项式回归模型的平均相对误差1.56%.喷涂距离对涂层显微硬度影响最为显著,最优工艺参数为:电流I=390 A,氩气流量QAr=2 500 L/h,喷距d=130 mm,能够预测的最大硬度为1 336.9HV0.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号