首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NiO nanoparticle films (200 nm thick) grown on Si substrates by pulsed laser deposition method were irradiated by 200 MeV Ag15+ ions. The films were characterized by glancing angle X-ray diffraction, atomic force microscopy and optical absorption spectroscopy. Though electronic energy loss of 200 MeV Ag ions in NiO matrix was higher than the threshold electronic energy loss for creation of columnar defects, films remained crystalline with the initial fcc structure even up to a fluence of 5 × 1013 ions cm−2, where ion tracks are expected to overlap. Irradiation however modified the microstructure of the NiO films considerably. The grain size decreased with increasing ion fluence, which led to reduced surface roughness and increased optical band gap due to quantum confinement. These results correlate well with variation of the power spectral density exponent with ion fluence, which indicate that at high ion fluences, the evolution of surface morphology is governed by surface diffusion.  相似文献   

2.
用35MeV/u的Ar离子室温下辐照多层堆叠的半晶质的聚酯(PET)膜,采用X射线衍射技术和X射线光电子谱仪分析研究了辐照引起的表面结构和组分的变化。结果表明:Ar离子辐照PET膜引起了明显的非晶化转变和化学键断裂、断裂主要发生在甲氧基和羰基功能团上,并使这两个功能团中的C和O的比分相对减少。非晶化效应和化学键断裂同时依赖于离子的照射剂量和离子在样品表面的电子能量损失、剂量越高,表面电子能量损失越大,效应就明显。同时定性地讨论了结果。  相似文献   

3.
Heavy ion beams have favorable energy deposition behavior because they can penetrate and deposit their energy well inside the target. Ion beams have potential uses in fields including heavy ion beam fusion, high-energy density physics and material processing. Intense heavy ion beams can generate high-energy density matter in the laboratory under extreme density and pressure conditions. Additionally, in heavy ion fusion, a stringent requirement for successful fuel ignition and sufficient fusion energy release is that the ion energy deposition profiles are calculated precisely in the energy absorber layer. In this work, the OK2 code was used to simulate the heavy ion beam energy deposition in various target materials, and a computer program was written to provide 3D visualization of the results. The heavy ion beams used in this work were composed of lead, uranium, and cesium ions with energies of 8 GeV and carbon ions with energies of 5 MeV. The targets included two shapes: a monolayer sphere that can be used in direct-driven fusion and a cylindrical shape that is common in indirectly driven heavy ion fusion.  相似文献   

4.
9C离子束是双重辐射源于在治疗肿瘤有明显优势。我们用蒙特卡洛程序FULKA模拟了290 MeV/u 9C离子束在水靶中的输运,研究其能量沉积、核碎片分布以及核碎片注量的深度分布,可为9C离子束肿瘤治疗剂量学提供参考。  相似文献   

5.
We have used 20Ne and 40Ar beams with energies between 3 and 8 MeV for elastic recoil detection (ERD) analysis of hydrogen isotopes in polymer samples and have also studied the depth resolution and the radiation damage. For the investigation of polymer mixtures it was possible to improve the depth resolution of ERD down to 8 nm FWHM with-out changing the experimental setup of conventional ERD, due to the higher energy loss factor of heavier ions and a reduced stopper foil thickness. For an improved surface depth resolution heavier ions are suitable, whereas lighter elements have a larger profiling depth. We found a 20Ne beam with an energy between 4 and 6 MeV to have a maximum analysing depth of 380 nm with a near surface depth resolution of 9 nm; however, for high resolution 40Ar-ERD measurements this maximum profiling depth is reduced to 90 nm. Due to the larger Rutherford scattering cross-section of heavier ions the measuring time decreases with increasing ion mass. We have investigated the ion beam radiation damage in polymer samples and introduced beam current density limits related to polystyrene samples. These results are supported by model calculations which give approximated values of the radiation damage.  相似文献   

6.
Makrofol-N polycarbonate thin films were irradiated with copper (50 MeV) and nickel (86 MeV) ions. The modified films were analyzed by UV-VIS, FTIR and XRD techniques. The experimental data was used to evaluate the formation of chromophore groups (conjugated system of bonds), degradation cross-section of the special functional groups, the alkyne formation and the amorphization cross-section. The investigation of UV-VIS spectra shows that the formation of chromophore groups is reduced at larger wavelength, however its value increases with the increase of ion fluence. Degradation cross-section for the different chemical groups present in the polycarbonate chains was evaluated from the FTIR data. It was found that there was an increase of degradation cross-section of chemical groups with the increase of electronic energy loss in polycarbonate. The alkyne and alkene groups were found to be induced due to swift heavy ion irradiation in polycarbonate. The radii of the alkyne production of about 2.74 and 2.90 nm were deduced for nickel (86 MeV) and copper (50 MeV) ions respectively. XRD analysis shows the decrease of the main XRD peak intensity. Progressive amorphization process of Makrofol-N with increasing fluence was traced by XRD measurements.  相似文献   

7.
高能Ar离子辐照PET膜引起的表面改性研究   总被引:2,自引:0,他引:2  
采用傅立叶转换的红外光吸收技术在反射方式下分析研究了35MeV/u Ar离子辐照半晶质PET膜引起的表面改性及其对吸收剂量的依赖性。结果表明,辐照导致PET膜中与晶态区域相关的吸收带强度随吸收剂量增加普遍减弱,而与非晶区域相关的吸收带强度随吸收剂量增加逐渐增加,表明辐照使PET膜发生了非晶化转变。化学键断裂主要发生在苯环的对位和酯的C-O键上,而苯环的基本结构在整个辐照过程中变化较小。非晶化效应和化学键断裂同时依赖于离子的照射剂量和样品表面的电子能量沉积。此外,在约5.0MGy以上的吸收剂量,辐照还引起了炔端基团的形成,炔端基团浓度随吸收剂量的增加显著增加。对实验结果进行了定性解释。  相似文献   

8.
Cadmium sulfide and cadmium telluride thin films are irradiated with high energy heavy ion beam to study the irradiation induced effects in these films. The polycrystalline thin film samples deposited by spray pyrolysis are irradiated with 60 MeV Oxygen ions using tandem Pelletron accelerator. The X-ray diffraction patterns exhibit a reduction in peak intensities in both CdS and CdTe films. The grain size decrease with fluence is observed for both CdS and CdTe films, with more decrease for CdTe films. The AFM results support this observation. The films show opposite trend in the variation of electrical resistivity with irradiation fluence. A decrease in resistivity is observed for CdS films due to an increase of carrier concentration arising by the creation of sulfur vacancies during the irradiation. The creation of sulfur vacancies is confirmed by XPS studies. The stoichiometric changes seen from XPS studies support this observation. An enhancement of grain boundary scattering due to the reduction of grain size leads to the increase of electrical resistivity for CdTe films.  相似文献   

9.
The 6.4 MeV 15N2+ ion beams are focused using glass capillary optics. The transmitted beam includes ions which have suffered slight energy loss. The areal density of the transmitted beam is enhanced by approximately 10 times, and the enhancement factor does not depend on the incident beam current. The NRA spectrum intensity decreases with the increase of the capillary taper angle. These results all together suggest that the nuclear forward scattering is more significant in the focusing mechanism than the low energy ions case.  相似文献   

10.
The Surrey Ion Beam Centre (IBC) is routinely using focused MeV primary ions to generate two-dimensional molecular maps using time-of-flight secondary ion mass spectrometry (ToF-SIMS) collected simultaneously with particle induced X-ray emission (PIXE) and Rutherford backscattering (RBS) spectra. Measurements made with the ToF-SIMS, PIXE, and RBS device with a focused and scanned MeV primary ion beam provide a more complete elemental and molecular evaluation of the target sample’s surface. In this paper, we explore the use of high electronic energy loss by MeV primary ions in the surface region of the target as a method for generating molecular images of the surface. We provide analyses of the relative secondary ion yield of leucine molecules as a function of primary ion velocity using MeV primary ions. We also demonstrate our ability to collect PIXE, RBS, and ToF-SIMS images generated using the same MeV primary ion.  相似文献   

11.
Measurements of the stoichiometry of silicon nitride films as a function of the number of incident ions using heavy ion elastic recoil detection (ERD) show that beam-induced nitrogen depletion depends on the projectile species, the beam energy, and the initial stoichiometry. A threshold stoichiometry exists in the range 1.3>N/Si1, below which the films are stable against nitrogen depletion. Above this threshold, depletion is essentially linear with incident fluence. The depletion rate correlates non-linearly with the electronic energy loss of the projectile ion in the film. Sufficiently long exposure of nitrogen-rich films renders the mechanism, which prevents depletion of nitrogen-poor films, ineffective. Compromising depth-resolution, nitrogen depletion from SiN films during ERD analysis can be reduced significantly by using projectile beams with low atomic numbers.  相似文献   

12.
A multicharged ion source based on electron cyclotron resonance (ECR) heating has been designed and built at ORNL. The ECR ion source, which is completely dedicated for atomic physics collisions studies, produces higher charge states and higher beam intensities than the present ORNL PIG multicharged ion source, and will thus permit study of collision processes involving ions of higher charge states in experiments requiring higher beam intensities than could be previously obtained in our laboratory. The source has already produced up to fully stripped C and O beams, as well as up to He-like Ar beams. Measurements of the energy spread of ions extracted from the ion source operating in both single-stage and two-stage mode are described. In addition, initial results of total cross section measurements for fully stripped light ions incident on atomic hydrogen in the energy range 0.2–10 keV are presented.  相似文献   

13.
We report here Swift heavy ion induced effects in GaN samples grown by metal organic chemical vapor deposition (MOCVD) technique. These samples were irradiated with 80 MeV Ni and 100 MeV Ag ions at a fixed fluence of 1 × 1013 ions/cm2. Ion species and energies are chosen such that the difference in their electronic energy loss (Se) would be 8 keV/nm. Effects of Ag on structural and optical properties over Ni ions have been discussed extensively. We employed different characterization techniques like High Resolution X-ray Diffraction (HRXRD) and Raman Spectroscopy for defect density calculations and for vibrational modes, respectively. Defect densities are calculated and compared using Williamson-Hall method from HRXRD. Change of strain and vibrational modes with Se has been discussed.  相似文献   

14.
An ion beam facility is described which can produce intense beams of very highly charged ions with variable energy in the keV and MeV regime. This facility consists of an electron cyclotron resonance ion source (ECR) and a radiofrequency quadrupole accelerating structure (RFQ). It provides a relatively cheap and compact device for material research with highly charged ions at surfaces as well as for deep-lying solid layers.  相似文献   

15.
Bombardment of semiconductors with fullerene has been used to induce the formation of tracks. It is now accepted that target electronic excitation and ionization, which gives rise to the slowing down of the projectile is essential to calculate the track diameter. In the case of cluster beams, like fullerenes, the electronic excitation induced by each of the cluster constituents is enhanced, for certain projectile energies and target depths, by the so-called vicinage effects. Here we use a simulation code to calculate the energy lost by a swift fullerene ion beam in InP, paying special attention to the vicinage effects where they are significative. The code describes classically the movement of each cluster constituent under the influence of the self-retarding force, the Coulomb repulsion among molecular fragments, the wake forces responsible for the vicinage effects and the multiple scattering with the target nuclei. The simulation code also takes into account the possibility that the molecular fragments can also capture or loss electrons from the target, changing its charge state in their travel through the solid.Our simulations show that the energy deposited by the atomic ions that constitute the C60 ion is clearly higher than the energy deposited by the same atomic ions but isolated. This difference being larger as the incident energy increases. We have predicted that track diameters of can be obtained in an InP target when using C60 ions with an initial energy of 300 MeV.  相似文献   

16.
Transport of heavy ions through an ion microbeam focusing system can be affected by insufficient vacuum within the beam transport tube. Due to interactions of heavy ions with atoms of residual gas in the vacuum tube of a microbeam facility, the angular, lateral and energy spreading of an ion beam increases prior to focusing, creating a beam halo. This beam halo can produce undesirable effects in some applications of ion microbeam techniques. In order to model this effect, the ion beam angular spread in residual gas has been approximated by Sigmund’s theoretical predictions for small-angle ion multiple scattering (MS), while ion energy loss straggling distributions have been applied for studying the energy spread. The extent of the beam halo has been estimated by combining the results of these calculations with ion optics calculations. Recommendations concerning microbeam focusing due to the vacuum conditions are given for different heavy ions in the MeV energy range.  相似文献   

17.
High voltage Engineering Europa B.V., The Netherlands developed a new generation of single-ended Van de Graaff accelerators for ion implantation and ion beam analysis. The new HVEE Van de Graaff accelerators are equipped with a unique (patented) ion source exchange system capable of handling four lands of ion sources, mass separation at high voltage level and an X-ray intensity suppression system. The accelerators are able to produce a large variety of continuously, homogeneous and highly collimated mass-analyzed ion beams of several hundred μA in the energy range from 50 keV up to l MeV (l MV model) or from 100 keV up to 2 MeV (2 MV model), using singly charged ions, whereby the maximum energy can be easily reached and maintained without conditioning and virtually no X-rays are produced. Combined with two dedicated end stations (one for ion beam analysis using RBS, channeling, NRA and PIXE, and one with an automatic wafer-handling system for both single-wafer implantation and batch processing), these systems are very suitable for research as well as industrial applications.  相似文献   

18.
CdTe polycrystalline thin films possessing hexagonal phase regions are obtained by spray deposition in presence of a high electric field. Thin film samples are irradiated with 100 MeV Ag ions using Pelletron accelerator to study the swift heavy ion induced effects. The ion irradiation results in the transformation of the metastable hexagonal regions in the films to stable cubic phase due to the dense electronic excitations induced by beam irradiation. The phase transformation is seen from the X-ray diffraction patterns. The band gap of the CdTe film changes marginally due to ion irradiation induced phase transformation. The value changes from 1.47 eV for the as deposited sample to 1.44 eV for the sample irradiated at the fluence 1×1013 ions/cm2. The AFM images show a gradual change in the shape of the particles from rod shape to nearly spherical ones after irradiation.  相似文献   

19.
Variation of the ion beam induced charge (IBIC) pulse heights due to ion irradiation was investigated on a Si pn diode and a 6H-SiC Schottky diode using a 2 Mev He+ micro-beam. Each diode was irradiated with a focused 2 MeV He+ micro-beam to a fluence in the range of 1×109–1×1013 ions/cm2. Charge pulse heights were analyzed as a function of the irradiation fluence. After a 2 MeV ion irradiation to the Si pn junction diode, the IBIC pulse height decreased by 15% at 9.2×1012 ions/cm2. For the SiC Schottky diode, with a fluence of 6.5×1012 ions/cm2, the IBIC pulse height decreased by 49%. Our results show that the IBIC method is applicable to evaluate irradiation damage of Si and SiC devices and has revealed differences in the radiation hardness of devices dependent on both structural and material.  相似文献   

20.
Swift heavy ions (SHI) induce high densities of electronic excitations in narrow cylindrical volumes around their path. These excitations have been used to manipulate the size and shape of noble metal nanoparticles embedded in silica matrix. Films containing noble metal nanoparticles were prepared by magnetron co-sputtering techniques. SHI irradiation of films resulted in the formation of prolate Ag nanoparticles with major axis along the ion beam direction. It has been observed that the nanoparticles smaller than the track size dissolve and other grow at their expense, while the nanoparticles larger than track size show deformation with major axis along the ion beam direction. The aspect ratio of elongated nanoparticles is found to be the function of electronic energy loss and ion fluence. Present report will focus on the role of size and volume fraction on the shape deformation of noble metal nanoparticles by electronic excitation induced by SHI irradiation. The detailed results concerning irradiation effects in silica-metal composites for dissolution, growth and shape deformation will be discussed in the framework of thermal spike model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号