首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 859 毫秒
1.
一个用于12位40-MS/s低功耗流水线ADC的MDAC电路设计   总被引:1,自引:1,他引:0  
文中设计了一个用于12位40MHz采样率低功耗流水线ADC的MDAC电路.通过对运放的分时复用,使得一个电路模块实现了两级MDAC功能,达到降低整个ADC功耗的目的.通过对MDAC结构的改进,使得该模块可以达到12bit精度的要求.通过优化辅助运放的带宽,使得高增益运放能够快速稳定.本设计在TSMC0.35μmmixsignal3.3V工艺下实现,在40MHz采样频率下,以奈奎斯特采样频率满幅(Vpp=2V)信号输入,其SINAD为73dB,ENOB为11.90bit,SFDR为89dB.整个电路消耗的动态功耗为9mW.  相似文献   

2.
给出了一个SMIC0.13μmCMOS工艺的10bit/60MHz流水线ADC的设计方法。该电路去掉了采样保持电路,同时引入运放分享技术,从而大大降低了功耗。仿真结果显示。在60MHz时钟采样时,其ENOB为9.67bit,SFDR为75.2dB。  相似文献   

3.
通过采样保持电路中运放的复用,提出了一种具有高线性度MOS采样开关的模数转换器前端采样保持电路结构。这种结构可以显著降低采样开关导通电阻变化引入的非线性,从而在不增加开关面积和功耗的情况下,实现了高性能的采样保持电路。基于0.13?m的标准CMOS工艺,对提出的采样保持电路进行了仿真。在采样时钟频率为100MHz,输入信号频率1MHz时,仿真结果显示,无杂散动态范围(SFDR)达到了116.6dB,总谐波失真(THD)达到了112.7dB,信号谐波噪声比(SNDR)达到103.7dB,可以满足14比特流水线ADC对采样保持电路的要求。  相似文献   

4.
设计了一种14位100 MS/s的流水线模数转换器(ADC)。采样保持电路与第1级2.5位乘法数模转换器(MDAC1)共享运放,降低了功耗。提出了一种改进的跨导可变双输入开关运放,以满足采样保持和MDAC1对运放的不同要求,并消除记忆效应和级间串扰。ADC后级采用5级1.5位运放共享结构。基于0.18 μm CMOS工艺,ADC核心面积为1.4 mm2。后仿真结果表明,在1.8 V电源电压下,当采样速率为100 MS/s、输入信号频率为46 MHz时,ADC的信噪比(SNR)为82.6 dB,信噪失真比(SNDR)为78.7 dB,无杂散动态范围(SFDR)为84.1 dB,总谐波失真(THD)为-81.0 dB,有效位数(ENOB)达12.78位。ADC整体功耗为116 mW。  相似文献   

5.
设计了一种应用于12 bit 250 MS/s采样频率的流水线模数转换器(ADC)的运算放大器电路.该电路采用全差分两级结构以达到足够的增益和信号摆幅;采用一种改进的频率米勒补偿方法实现次极点的“外推”,减小了第二级支路所需的电流,并达到了更大的单位增益带宽.该电路运用于一种12 bit 250 MS/s流水线ADC的各级余量增益放大器(MDAC),并采用0.18 μm 1P5M 1.8 V CMOS工艺实现.测试结果表明,该ADC电路在全速采样条件下对于20 MHz的输入信号得到的信噪比(SNR)为69.92 dB,无杂散动态范围(SFDR)为81.17 dB,整个ADC电路的功耗为320 mW.  相似文献   

6.
介绍了一个10位30M采样率流水线A/D转换器,通过采用运放共享技术和动态比较器,大大降低了电路的功耗. 在采样保持电路中使用一种新颖的自举(bootstrap)开关,减小了失真,使得电路在输入信号频率很高时仍具有很好的动态性能. 还提出了一种新的偏置电路结构,为增益提高运放提供了一个稳定且精确的偏置,使得增益提高运放具有较大的电压摆幅. 在30MHz采样时钟,29MHz输入信号下测试,可以得到9.16bit有效位的输出,在输入信号为70MHz时,仍然有8.75bit有效位. 电路积分非线性的最大值为0.  相似文献   

7.
基于电子不停车收费系统(ETC)接收机的要求,在TSMC018μm工艺下设计并实现一种8bit 32 MS/s流水线型模数转换器。通过详细理论分析确定设计参数和电路模型,通过运放共享以及带有增益自举的套筒式运算放大器和开关电容共模反馈电路降低电路的静态功耗,通过动态比较器以及静态锁存结构降低电路的动态功耗,使得功耗降低为原来的一半。测试结果显示ADC输入摆幅-0.4~0.4V下,功耗5.017mA,非使能状态下功耗0.567μA,信噪比(SNR)49.21dB,有效位(ENOB)7.77bit,无杂散噪声(SFDR)65.41dB,面积580μm×450μm。  相似文献   

8.
基于0.6μm BiCMOS工艺,设计了一个低功耗14位10MS/s流水线A/D转换器.采用了去除前端采样保持电路、共享相邻级间的运放、逐级递减和设计高性能低功耗运算放大器等一系列低功耗技术来降低ADC的功耗.为了减小前端采样保持电路去除后引入的孔径误差,采用一种简单的RC时间常数匹配方法.仿真结果表明,当采样频率为10MHz,输入信号为102.5kHz,电源电压为5V时,ADC的信噪失真比(SNDR)、无杂散谐波范围(SFDR)、有效位数(ENOB)和功耗分别为80.17dB、87.94dB、13.02位和55mW.  相似文献   

9.
摘要:本文采用提出的面积和功耗优化结构,设计了一个10-bit 50-MS/s的流水线模数转换器。本设计将采样保持和第一级转换电路融合为一个模块,既省去了前端采样保持电路,又避免了第一级中余差放大电路和子模数转换器延时路径需要匹配的问题,该模块具有功耗低稳定性高的特点。为了进一步降低面积和功耗,相邻两级间采用运放共享结构,该结构具有运放失调电压和级间串扰影响小的特点。该10-bit模数转换器的实现仅采用了四个运放。测试结果表明,当采样率为50MHz、输入为奈奎斯特频率时,获得52.67dB SFDR和59.44dB SNDR。当输入频率上升到两倍奈奎斯特频率时,该模数转换器仍然保持了稳定的动态性能。本设计采用0.35μm CMOS工艺实现,芯片有效面积仅为1.81mm2,50MHz采样率3.3V供电时功耗为133mW。  相似文献   

10.
该文对比传统基于运放结构的MDAC,介绍了基于过零检测电路ZCBC(zero-crossingbased circuit)的MDAC结构。该结构可以实现轨到轨的信号范围,更加适用于深亚微米下流水线型ADC的设计。并采用0.18μm CMOS工艺,设计了一款10bit 10MSPS 1.5bit/级的流水线型ADC。仿真结果表明:在采样频率为10MHz,输入信号频率为1MHz时,SFDR为66.39dB,ENOB为8.57bits,THD为-62.30dB,DNL为1.36LSB,INL为2.24LSB。  相似文献   

11.
王改  成立  杨宁  吴衍  王鹏程 《半导体技术》2010,35(5):478-481,494
在全差分折叠式共栅-共源运放的基础上,设计了一款BiCMOS采样/保持电路。该款电路采用输入自举开关来提高线性度,同时设计的高速、高精度运放,其建立时间tS只有1.37 ns,提升了电路的速度和精度。所设计的运放中的双通道共模反馈电路使共模电压稳定输出时间tW约达1.5 ns。采用SMIC公司的0.25μmBiCMOS工艺参数,在Cadence Spectre环境下进行了仿真实验,结果表明,当输入正弦电压频率fI为10 MHz、峰-峰值UP-P为1 V,且电源电压VDD为3 V、采样频率fS为250 MHz时,所设计的采样/保持电路的无杂散动态范围SFDR约为-61 dB,信噪比SNR约为62 dB,整个电路的功耗PD约为10.85 mW,适用于10位低压、高速A/D转换器的设计。  相似文献   

12.
采用TSMC0.18μm 1P6MCMOS工艺设计了一种高性能低功耗采样保持电路。该电路采用全差分折叠增益自举运算放大器和栅压自举开关实现。在3.3V电源电压下,该电路静态功耗仅为16.6mw。在100MHz采样频率时,输入信号在奈奎斯特频率下该电路能达到91dB的SFDR,其有效精度可以达到13位。  相似文献   

13.
A fully-differential switched-capacitor sample-and-hold (S/H) circuit used in a 10-bit 50-MS/s pipeline analog-to-digital converter (ADC) was designed and fabricated using a 0.35-μm CMOS process. Capacitor fliparound architecture was used in the S/H circuit to lower the power consumption. In addition, a gain-boosted operational transconductance amplifier (OTA) was designed with a DC gain of 94 dB and a unit gain bandwidth of 460 MHz at a phase margin of 63 degree, which matches the S/H circuit. A novel double-side bootstrapped switch was used, improving the precision of the whole circuit. The measured results have shown that the S/H circuit reaches a spurious free dynamic range (SFDR) of 67 dB and a signal-to-noise ratio (SNR) of 62.1 dB for a 2.5 MHz input signal with 50 MS/s sampling rate. The 0.12 mm2 S/H circuit operates from a 3.3 V supply and consumes 13.6 mW.  相似文献   

14.
介绍了一种12 bit 80 MS/s流水线ADC的设计,用于基带信号处理,其中第一级采用了2.5 bit级电路,采样保持级采用了自举开关提高线性,后级电路采用了缩减技术,节省了芯片面积.采用了折叠增益自举运放,优化了运放的建立速度,节省了功耗.芯片采用HJTC0.18μm标准CMOS工艺,1.8 V电压供电,版图面积2.3 mm × 1.4 mm.版图后仿真表明,ADC在8 MHz正弦信号1 V峰值输入下,可以达到11.10 bit有效精度,SFDR达到80.16 dB,整个芯片的功耗为155 mW.  相似文献   

15.
低电压低功耗CMOS采样保持电路   总被引:2,自引:0,他引:2       下载免费PDF全文
郑晓燕  王江  仇玉林   《电子器件》2006,29(2):318-321
设计了一个用于流水线型模数转换器的低压采样保持电路。为降低采保电路中运放的功耗,本文采用了增益补偿的采样保持电路结构,从而用简单的低增益运放达到高精度的效果。并从运放输出建立时间的角度对其输入电流进行优化。为了提高精度,降低采样开关的电阻并减小非线性误差,设计了信号相关自举电压控制的开关。仿真结果表明在1.8V的电源电压下,达到10bit的精度和50Mbit的采样率,整个采保电路的功耗仅为2.3mW。  相似文献   

16.
介绍了一种用于12 bit,20 MS/s流水线模数转换器前端的高性能采样/保持电路。该电路采用全差分结构、底极板采样来消除电荷注入和时钟馈通误差。采用栅压自举开关,并通过对电路中的开关进行组合优化,极大地提高了电路的线性性能。同时,运算放大器采用折叠式增益增强结构,以获得较高的增益和带宽。采用CSMC公司的0.5μm CMOS工艺库,对电路进行了仿真和流片。结果表明,在5 V电源电压下,采样频率为20 MHz,采样精度可达到0.012%,在输入信号为奈奎斯特频率时,无杂散动态范围(SFDR)为76 dB。  相似文献   

17.
An L/S band high-power and low-distortion AlGaAs/GaAs heterostructure field-effect-transistor amplifier has been developed. The amplifier employed two pairs of prematched GaAs chips mounted on a single package, and the total output power was combined in a push-pull configuration with a low-loss microstrip balun circuit. The developed amplifier demonstrated state of-the-art performance of 140 W output power with 11.5 dB linear gain at 2.2 GHz. In addition, it exhibited extremely low distortion performance, which is suitable for digital cellular base station system applications  相似文献   

18.
通过分析InGaP/GsAsHBT器件的热学和电学特点,结合HBT大功率放大器芯片在技术性能、稳定性、可靠性及尺寸等方面的要求,通过优化设计HBT功率器件单元和匹配电路,开发了一个大功率、高效率、小尺寸的ISM波段功率放大器单片集成电路。该三级放大器的各级器件单元的发射极面积分别为320μm2,1280μm2,5760μm2,芯片内部包括了输入、输出50Ω匹配电路,面积仅为1.9mm×2.1mm。放大器采用5V单电源供电,在2.4~2.5GHz频率范围内线性增益为27dB,2dB增益压缩点输出饱和功率达到37dBm,功率附加效率为46%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号