共查询到4条相似文献,搜索用时 0 毫秒
1.
So-Hee Kim Sun-Ae Oh Woo-Kul Lee Ueon Sang Shin Hae-Won Kim 《Materials science & engineering. C, Materials for biological applications》2011,31(3):612-619
This work aims to modify the surface of a poly(lactic acid) (PLA) porous scaffold with calcium phosphate (CaP) via a simple solution-based technique, and to evaluate the effects of this modification on the responses of rat bone marrow mesenchymal stem cells (rBMMSCs). Under appropriate modification conditions involving stepwise-treatments in the Ca-and-P supersaturated solution under gentle agitation, a thin, poorly crystallized CaP layer was deposited. The BMMSCs derived from adult rats were shown to adhere quite well to the CaP-coated scaffold, and to proliferate actively with culturing time, although some down-regulation was noted with regard to the unmodified PLA scaffold. The osteogenic differentiation of rBMMSCs was significantly higher on the CaP-modified scaffold than on the unmodified scaffold, as confirmed by alkaline phosphatase (ALP) activity. Moreover, the expression of genes associated with bone, including collagen type I, osteopontin and bone sialoprotein, was stimulated better on the CaP-modified PLA scaffold. Based on these results, the currently used CaP-treatment was deemed effective in stimulating the osteogenic development of rBMMSCs on the PLA-based scaffold, and the CaP-treated PLA scaffold may be useful for future bone tissue engineering. 相似文献
2.
Jian-Feng Pan Shuo Li Chang-An Guo Du-Liang Xu Feng Zhang Zuo-Qin Yan Xiu-Mei Mo 《Science and Technology of Advanced Materials》2015,16(4)
Stem cells and scaffolds play a very important role in tissue engineering. Here, we isolated synovium-derived mesenchymal stem cells (SMSCs) from synovial membrane tissue and characterized stem-cell properties. Gelatin nanoparticles (NP) were prepared using a two-step desolvation method and then pre-mixed into different host matrix (silk fibroin (SF), gelatin (Gel), or SF–Gel mixture) to generate various 3D printed nanocomposite scaffolds (NP/SF, NP/SF–Gel, NP/Gel-1, and NP/Gel-2). The microstructure was examined by scanning electron microscopy. Biocompatibility assessment was performed through CCK-8 assay by coculturing with SMSCs at 1, 3, 7 and 14 days. According to the results, SMSCs are similar to other MSCs in their surface epitope expression, which are negative for CD45 and positive for CD44, CD90, and CD105. After incubation in lineage-specific medium, SMSCs could differentiate into chondrocytes, osteocytes and adipocytes. 3D printed nanocomposite scaffolds exhibited a good biocompatibility in the process of coculturing with SMSCs and had no negative effect on cell behavior. The study provides a strategy to obtain SMSCs and fabricate 3D printed nanocomposite scaffolds, the combination of which could be used for practical applications in tissue engineering. 相似文献
3.
AbstractStem cells and scaffolds play a very important role in tissue engineering. Here, we isolated synovium-derived mesenchymal stem cells (SMSCs) from synovial membrane tissue and characterized stem-cell properties. Gelatin nanoparticles (NP) were prepared using a two-step desolvation method and then pre-mixed into different host matrix (silk fibroin (SF), gelatin (Gel), or SF–Gel mixture) to generate various 3D printed nanocomposite scaffolds (NP/SF, NP/SF–Gel, NP/Gel-1, and NP/Gel-2). The microstructure was examined by scanning electron microscopy. Biocompatibility assessment was performed through CCK-8 assay by coculturing with SMSCs at 1, 3, 7 and 14 days. According to the results, SMSCs are similar to other MSCs in their surface epitope expression, which are negative for CD45 and positive for CD44, CD90, and CD105. After incubation in lineage-specific medium, SMSCs could differentiate into chondrocytes, osteocytes and adipocytes. 3D printed nanocomposite scaffolds exhibited a good biocompatibility in the process of coculturing with SMSCs and had no negative effect on cell behavior. The study provides a strategy to obtain SMSCs and fabricate 3D printed nanocomposite scaffolds, the combination of which could be used for practical applications in tissue engineering. 相似文献
4.
Jae Ho Lee Hye-Sun Yu Gil-Su Lee Aeri Ji Jung Keun Hyun Hae-Won Kim 《Journal of the Royal Society Interface》2011,8(60):998-1010
Three-dimensional gel matrices provide specialized microenvironments that mimic native tissues and enable stem cells to grow and differentiate into specific cell types. Here, we show that collagen three-dimensional gel matrices prepared in combination with adhesive proteins, such as fibronectin (FN) and laminin (LN), provide significant cues to the differentiation into neuronal lineage of mesenchymal stem cells (MSCs) derived from rat bone marrow. When cultured within either a three-dimensional collagen gel alone or one containing either FN or LN, and free of nerve growth factor (NGF), the MSCs showed the development of numerous neurite outgrowths. These were, however, not readily observed in two-dimensional culture without the use of NGF. Immunofluorescence staining, western blot and fluorescence-activated cell sorting analyses demonstrated that a large population of cells was positive for NeuN and glial fibrillary acidic protein, which are specific to neuronal cells, when cultured in the three-dimensional collagen gel. The dependence of the neuronal differentiation of MSCs on the adhesive proteins containing three-dimensional gel matrices is considered to be closely related to focal adhesion kinase (FAK) activation through integrin receptor binding, as revealed by an experiment showing no neuronal outgrowth in the FAK-knockdown cells and stimulation of integrin β1 gene. The results provided herein suggest the potential role of three-dimensional collagen-based gel matrices combined with adhesive proteins in the neuronal differentiation of MSCs, even without the use of chemical differentiation factors. Furthermore, these findings suggest that three-dimensional gel matrices might be useful as nerve-regenerative scaffolds. 相似文献