首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here,a single-track CoCrFeMnNi high entropy alloy(HEA)was successfully fabricated by laser melting deposition(LMD).Combining the experimental observations and numerical simulation,the microstruc-ture and mechanical properties of the as-deposited parts were systematically studied from the perspective of thermo-mechanical history experienced during the LMD process.The strengthening mech-anisms of the LMDed CoCrFeMnNi HEA parts were clarified.The frictional stress strengthening,grain boundary strengthening and dislocation strengthening contributed the whole yield strength of the parts.Dislocation strengthening dominated the strengthening mechanism.It was expected that the establish-ment of the relationship between thermo-mechanical history,microstructure and mechanical properties of the LMDed CoCrFeMnNi HEA could shed more insights into achieving HEA parts with the desired microstructure and high performance.  相似文献   

2.
High entropy alloy(HEA)-based alloy design is experiencing a conceptual broadening from equiatomic alloys to non-equiatomic alloys.To provide experimental basis for designing Cu-rich non-equiatomic HEAs,in the current study,a dual phase(Cu-rich and CoCrFeNi-rich phases) face-centered cubic CoCrFeNiCu4 alloy was systematically investigated.We provided initial and experiment-based understanding of the behavioral change of the alloy during a variety of thermal cycles and thermomechanical processing.The current results indicate that,during heating,preferred precipitation of Cu-rich particles occurs,leading to more pronounced compositional differences between the two constituent FCC phases and increased relative volume fraction of the Cu-rich phase.The Alloy exhibits a continuous melting and discontinuous solidification of the Cu-rich and CoCrFeNi-rich phases.After being cold-rolled to ~90 % thickness reduction,the alloy exhibits a recrystallization temperature higher than 800℃.Annealing at 300 and 500℃ led to strength reduction and/or ductility decrease;further increasing annealing temperature monotonically caused softening and ductilization due to decreased density of pre-existing dislocations.The yield-drop phenomena observed for the 900℃-and 1000℃-annealed specimens are associated with the locking of pre-existing dislocations by some "atmosphere",the nature of which warrants further elucidation.  相似文献   

3.
CuZrAlTiNi High entropy alloy (HEA) coating was synthesized on T10 substrate using mechanical alloying (MA) and vacuum hot pressing sintering (VHPS) technique. The MA results show that the final product of as-milled powders is amorphous phase. The obtained coating sintered at 950 °C is compact and about 0.9 mm in thickness. It is composed of a couple of face-centered cubic (FCC), one body-centered cubic (BCC) solid solutions and AlNi2Zr phase. The interface strength between coating and substrate is 355.5 MPa measured by three point bending test. Compared with T10 substrate, the corrosion resistance of CuZrAlTiNi HEA coating is enhanced greatly in the seawater solution, which is indicated by the higher corrosion potential, wider passivation region, and secondary passivation. The average microhardness of the coating reaches 943 HV0.2, and is about 3.5 times higher than the substrate, which is mainly ascribed to the uniformly dispersed nano-size precipitates, phase boundary strengthening and solid solution strengthening. Moreover, the wear resistance of the coating is slightly improved in comparison with the substrate.  相似文献   

4.
《材料科学技术学报》2019,35(6):1175-1183
In this study, the effects of composition and phase constitution on the mechanical properties and magnetic performance of AlCoCuFeNix (x = 0.5, 0.8, 1.0, 1.5, 2.0, 3.0 in molar ratio) high entropy alloys (HEAs) were investigated. The results show that Ni element could lead to the evolution from face centered cubic (FCC), body centered cubic (BCC) and ordered BCC coexisting phase structure to a single FCC phase. The change of phase constitution enhances the plasticity but reduces the hardness and strength. One of the interesting points is the excellent soft magnetic properties of AlCoCuFeNix HEAs. Soft magnetic performance is dependent on composition and phase transition. AlCoCuFeNi1.5 alloy, achieving a better balance of mechanical and magnetic properties, could be applied as structure materials and soft magnetic materials (SMMs). High Curie temperature (>900 K) and strong phase stability below 1350 K of AlCoCuFeNi0.5 alloy confirm its practicability in a high-temperature environment. Atomic size difference (δ) is utilized as the critical parameter to explain the lattice strain and phase transformation induced by Ni addition.  相似文献   

5.
Abstract

The plastic deformation of a high entropy alloy Al0.5CoCrFeNi was investigated by instrumented nanoindentation over a broad range of strain rates at room temperature. Results show that the creep behaviour depends on the strain rate remarkably. In situ scanning images showed a significant pile up around the indents, demonstrating that a highly localised plastic deformation occurred in the process of nanoindentation. Under different strain rates, contact stiffness and elastic modulus basically remain unchanged. However, the hardness decreases as indentation depth increases due to indentation size effect. For the same maximum load, serrations became less prominent as the loading rate of indentation increased. Similar serrations have been observed in the current alloy upon quasi-static compression.  相似文献   

6.
A rapidly solidified high entropy alloy AlCoNiCrFe was annealed at different temperatures with high magnetic field applied up to 4 T. Both precipitation and coarsening of the precipitates were promoted during annealing in a high magnetic field, and nanosized arrayed particles as well as boundary oriented secondary phases were formed with effects of magnetic field. The microstructural features were obtained owing to enhancement of atomic diffusion by applying high magnetic field. It was found that both hardness and yield strength were not strongly dependent on the magnetic field, but the ultimate compression strength is reduced as higher magnetic field is applied due to formation and coarsening of the precipitates on grain boundaries.  相似文献   

7.
The CrFeCoNi high-entropy alloy (HEA) exhibits excellent mechanical properties at lower temperatures due to its low stacking-fault energy,however,its medium-and high-temperature strengths are still insufficient.In consideration of the potential diversified applications,more strengthening approaches except for the previously proposed L12 phase hardening deserve further exploration due to its rapid coarsening tendency at high temperatures.Here,we achieved significant high-temperature strengthening of the cast CrFeCoNi HEA by in-situ precipitation of highly thermostable carbides.Alloys with 0.5 at.% and 1 at.% niobium and carbon were prepared by simple casting processes,i.e.drop cast,solute solution and aging.A highly thermostable microstructure was formed,which comprises very coarse grains accompanied with extensive thermostable carbide precipitates embedded,including submicrometer coherent NbC particles in grain interiors and intergranular coherent M23C6 carbides.This high thermostability of microstructure,which is beneficial for the high-temperature loading,is ascribed to the synergy of lacking growth driving force and Zenner pinning effect by the carbides.Tensile properties tested at 673,873 and 1073 K show that the yield strength and ultimate tensile strength are significantly increased by Nb/C doping,along with the elongation escalation at higher temperatures.The strengthening is mainly due to the precipitation hardening of carbide particles.  相似文献   

8.
In this study, an equiatomic CoCrFeMnNi high entropy alloy (HEA) was fabricated by a rapid solidified gas atomization process. Subsequently, the high-energy mechanical milling was carried out to further refine the microstructure of pre-alloyed powder to improve the sintering ability and strengthening of HEAs. The microscopic results show that the powder morphology significantly changed from spherical to flatten, flake, irregular, and partially spherical shape with increasing milling time. The XRD results exhibited HEA bulks consisting of major FCC and minor Cr7C3 phases. The hardness of HEA bulks increased from 270±10 Hv to 450±10 Hv with increasing milling time, while the compressive yield strength increased from 370 MPa to 1050 MPa due to grain boundary strengthening and dislocation strengthening. Meanwhile, the lowest coefficient of friction ~0.283 and specific wear rate ~1.03×10-5 mm3/Nm were obtained for the 60 min milled HEA due to increased surface hardness and oxidation behavior. The developed powder metallurgy approach could be considered as a promising way to improve the strength and wear resistance when compared to the conventional processed CoCrFeMnNi HEAs.  相似文献   

9.
In order to improve mechanical properties of refractory high entropy alloys,silicide was introduced and NbMoTiVSix(x=0,0.1,0.2,0.3,and 0.4,molar ratio) refractory high entropy alloys are prepared by vacuum arc melting.Phase composition,micro structure evolution and mechanical properties were systematically studied.Results show that the silicide phase is formed in the alloys with addition of silicon,and the volume fraction of silicide increases from 0 to 8.3 % with increasing of silicon.Microstructure observation shows that the morphology of dendrite changes from columnar to near equiaxed,eutectic structure is formed at grain boundaries and composed of secondary BCC phase and silicide phase.The average length of the primary and second dendrites decreases with the increasing of silicon.Whereas,the ratio of eutectic structure increases from 0 to 19.8 % with the increment of silicon.The refinement of microstructure is caused by heterogeneous nucleation from the silicide.Compressive tests show that the yield and ultimate strength of the alloys increases from 1141.5 MPa to 2093.1 MPa and from 1700.1 MPa to 2374.7 MPa with increasing silicon content.The fracture strain decreases from 24.7 %-11.0 %.Fracture mechanism is changed from ductile fracture to ductile and brittle mixed fracture.The improvement of the strength is caused by grain bounda ry strengthening,which includes more boundaries around primary BCC phase and eutectic structure in grain boundary,both of them is resulted from the formation of silicide.  相似文献   

10.
The electrochemical properties of a friction stir processed (FSPed) equiatomic CrMnFeCoNi high-entropy alloy (HEA) was investigated in an aerated 0.5 M Na2SO4 electrolyte solution at room temperature.The microstructural analysis reveals a highly refined stir zone (SZ) with an average grain size that decreases from the top region of the SZ to the bottom region of the SZ (also known as shear-processed zone;SPZ).However,the region below the SPZ,(i.e.below the plunge depth) experienced an increase in average grain size and dislocation densities compared to the other regions.There is no secondary phase observed in the FSPed region,however,the microstructural evolution in the FSPed region affects the electrochemical behavior of the HEA.Cr2O3 passive layer was observed to form on the FSPed HEA,leading to excellent corrosion properties from the polarization corrosion tests.Grain refinement in the SZ enhances the rapid formation of the passive layer,thus,leading to better corrosion properties in the front surface of the FSPed HEA.The localized corrosion behavior of the FSPed HEA was predicted to be caused by the micro-galvanic nature of the HEA,which leads to an increase in polarization at the anodic sites (pits).A numerical model was established using the corrosion parameters from the experiment to simulate the localized corrosion behavior on the surface of the FSPed HEA in a neutral environment.The predicted initial pitting potential and corresponding current density agree well with the experimental results.The model is also capable of tracking the dissolution of the pits over longer periods.  相似文献   

11.
Y.J. Zhou  Y. Zhang  T.N. Kim  G.L. Chen 《Materials Letters》2008,62(17-18):2673-2676
It was reported that AlCoCrFeNiTi0.5 alloy exhibits excellent comprehensive mechanical properties. In this letter, this alloy was further studied on its microstructures and strengthening mechanism. The super-high strength and good plasticity of AlCoCrFeNiTi0.5 alloy should be attributed to its microstructure of intrinsic strong body-centered cubic solid solution, and effective multiple strengthening mechanisms like solid solution strengthening, precipitation strengthening, and nano-composite strengthening effects, etc.  相似文献   

12.
This paper reports a synergistic design of high-performance BCC high-entropy alloy based on the com-bined consideration of the principles of intrinsic ductility of elements,maximum atomic size difference for solid solution strengthening and the valence electron concentration criterion for ductility.The single-phase BCC HfNbTaTiV alloy thus designed exhibited a high compressive yield strength of 1350 MPa and a high compressive ductility of >45 % at the room temperature.This represents a 50 % increase in yield strength relative to a HfNbTaTiZr alloy.This is attributed to the maximized solid solution strengthening effect caused by lattice distortion,which is estimated to be 1094 MPa.The alloy was also able to retain 53 % of its yield strength and 77 % of its ductility at 700 ℃.These properties are superior to those of most refractory BCC high-entropy alloys reported in the literature.  相似文献   

13.
本文简述了难熔高熵合金的含义与特点,归纳了各类难熔高熵合金(块体、薄膜、涂层)的制备方法,重点阐述了难熔高熵合金的综合性能。建议通过构建专门的难熔高熵合金数据库优化成分设计,并着重于不同制备方法的工艺性研究。针对目前难熔高熵合金存在室温脆性大、密度大、成本高等不足,提出可根据所需难熔高熵合金的性能而选择不同的制备方法,以便未来工业化应用。  相似文献   

14.
AlCoFeNiTiZn high entropy alloy was successfully produced in powder form by the mechanical alloying process. The ball-milled alloyed product was characterized by X-ray diffractometry, scanning electron microscopy, energy dispersive spectroscopy, and transmission electron microscopy techniques, which indicated that after 120 h of milling, the solid solution was formed as predicted by thermodynamic calculations. Mechanical alloying began to form the BCC phase almost at 30 h and the FCC phase after about 30 h. Nucleation and growth were the processes involved in the formation of these phases, as shown by the Johnson-Mehl-Avrami kinetic model. Sintering was then used to fabricate the alloy in bulk metallic form. The powders were cold pressed and sintered after 120 h of mechanical alloying using a tube furnace with a controlled atmosphere at 500 °C. A similar FCC + BCC phase mixture was present after sintering. The sintered sample also contained minor amounts of Gahnite (ZnAl2O4) spinel material. DSC analysis revealed that recrystallization occurred at 280 °C. The as-milled and as-sintered alloys exhibit semi-hard magnetic properties measured by vibrating sample magnetometer (VSM), with saturation magnetization values of 39.14 and 65.78 emu/g, respectively.  相似文献   

15.
This research article focused on developing Al0.3CrFeNiCo0.3Si0.4 nanocrystalline high-entropy alloy (HEA) by mechanical alloying. The initial powders mixture was ball milled for 1 hr (HEA-1 h), 5 hr (HEA-5 h), 15 hr (HEA-15 h) and 25 hr (HEA-25 h) at ball to powder mass ratio (BPR) of 15:1 and a speed of 300 rpm. The mechanical alloying time was varied from 1 to 25 hr to ensure the nanocrystalline nature and attainment of steady state in HEA powders. The structure of the developed HEAs was characterized by means of X-ray diffraction (XRD), Laser particle size analyzer (LPSA), and various electron microscopes (TEM and FEGSEM with EDS). HEA-25hr sample exhibited the crystallite size of 13.8 nm with lattice strain of 0.67% obtained from XRD which matched the result by TEM. The formation of a solid solution (SS) with a uniform elemental dispersion was observed with a major BCC stable structure and a minor FCC structure in HEA-25 h sample. The HEA-25 h sample revealed an average particle size of 386.2 nm (89.8% peak intensity) with Polydispersity Index (PDI) value of 0.364 which confirmed the uniform distribution of particles over a narrow range of particle size. The synthesized powders were consolidated to green compacts with a loading rate of 1 mm/min at different compaction pressures (25, 50, 75, 100, 150, 200, 400, 600, 800, 1000, and 1100 MPa) for examining the powder particles packing. Several compaction models (both linear and non-linear) were discussed to establish the density-pressure relationship of developed HEAs. The results revealed that the milling time has influenced the relative density. HEA-1 h sample was exhibited the relative density of 0.76 whereas HEA-25 h sample was produced the relative density of 0.6 indicating more strength and more amount of strain hardening occurs in MAed HEA-25 sample in addition to the entropy effect for the same composition.  相似文献   

16.
In this study,a magnetic high entropy alloy (HEA) of CoFeMn1.2NiGa0.8 was designed and prepared by arc melting in order to investigate its mechanical,corrosion and magnetic behavior.The results show that the alloy mainly possesses body-centered cubic (BCC) phase and face-centered cubic (FCC) phase.A high compressive strength of 1450 MPa,a strain of 18.5 % and a relatively low yield strength of 303 MPa in as-cast condition at room temperature can be achieved in the present alloy.In-situ high-energy X-ray diffraction technique was employed to reveal the deformation mechanism of CoFeMn1.2NiGa0.8 under uniaxial compression and the results show that the competition between BCC phase and FCC phase plays a significant role during the compressive process.The corrosion behavior of CoFeMn1.2NiGa0.8 was investigated in 3.5 wt% NaCl solution and it turned out that the alloy possessed good corrosion resistance.At last,the magnetic behavior of the CoFeMn1.2NiGa0.8 alloy was studied and it can present a high saturation magnetization of 94.5 emu/g and a coercivity of 26.4Oe at 4 K.This work indicates that the present CoFeMn1.2NiGa0.8 HEA has promising applications as future magnetic functional materials.  相似文献   

17.
Effect of the addition of trace HA particles into Mg-2Zn-0.5Sr on microstructure, mechanical properties, and bio-corrosion behavior was investigated in comparison with pure Mg. Microstructures of the Mg-2Zn-0.5Sr-xHA composites(x = 0, 0.1 and 0.3 wt%) were characterized by optical microscopy(OM),scanning electron microscopy(SEM) equipped with energy dispersion spectroscopy(EDS) and X-ray diffraction(XRD). Results of tensile tests at room temperature show that yield strength(YS) of Mg-2Zn-0.5Sr/HA composites increases significantly, but the ultimate tensile strength(UTS) and elongation decrease with the addition of HA particles from 0 up to 0.3 wt%. Bio-corrosion behavior was investigated by immersion tests and electrochemical tests. Electrochemical tests show that corrosion potential(Ecorr)of Mg-2Zn-0.5Sr/HA composites significantly shifts toward nobler direction from-1724 to-1660 m VSCE and the corrosion current density decreases from 479.8 to 280.8 μA cm~(-2) with the addition of HA particles. Immersion tests show that average corrosion rate of Mg-2Zn-0.5Sr/HA composites decreases from11.7 to 9.1 mm/year with the addition of HA particles from 0 wt% up to 0.3 wt%. Both microstructure and mechanical properties can be attributed to grain refinement and mechanical bonding of HA particles with second phases and α-Mg matrix. Bio-corrosion behavior can be attributed to grain refinement and the formation of a stable and dense CaHPO_4 protective film due to the adsorption of Ca~(2+)on HA particles. Our analysis shows that the Mg-2Zn-0.5Sr/0.3HA with good strength and corrosion resistance can be a good material candidate for biomedical applications.  相似文献   

18.
Phase constitutions,either changed by alloying or by phase transformation,are the key factors to determine the magnetic and mechanical performances of high-entropy alloys (HEAs).Using the AlCoCrFeNi HEA as a candidate alloy,this paper demonstrates the effect of phase transformation on both the mechanical and magnetic properties in the multi-phase system.With increasing heat treatment temperature,the sigma (σ) and face-centered-cubic (FCC) phases disappeared at 1000 ℃ and 1200 ℃,respectively.Such volume fraction changes ofσ,FCC and body-centered-cubic (BCC) phases have divergent effects on mechanical and magnetic properties.The excellent strength-ductility combination will be achieved as the disappearance of σ phase and formation of FCC phase.As for the magnetic properties,the volume fraction of BCC phase plays a major role in determining its saturation magnetization.When the volume fraction change of BCC phase is not evident,the higher volume fraction of FCC phase will influence its magnetization at 2 T.Our present work might provide insights into analyzing the evolution of both mechanical and magnetic properties of HEAs caused by complex phase transformation.  相似文献   

19.
The probable formation mechanism of He bubble superlattices relies on long range anisotropic diffusion of self-interstitial atoms (SIAs). Here we study He ion irradiation of pure Ni and two equiatomic concentrated solid-solution alloys (CSAs) of FeNi and FeCrNiCo. It is expected from the significantly reduced diffusion of SIAs in CSAs, including high entropy alloys (HEAs), that long range anisotropic SIA migration cannot be active. We report the formation of a He bubble lattice in pure Ni, and for the first time in FeNi and FeCrNiCo systems under 30 keV He ion irradiation at room temperature. The ion dose and flux required to form a bubble superlattice increase with chemical complexity. Comparing to Ni, SIA clusters change directions more frequently due to anisotropic elementally-biased diffusion from the higher degree of chemical non-homogeneity in CSAs. Nevertheless, anisotropic 1-D diffusion of interstitial defects is possible in these complex alloys over incrementally longer time scales and irradiation doses. The sluggish diffusion, characteristic in CSAs, leads to smaller superlattice parameters and smaller bubble diameters. The chemical biased SIA diffusion and its effects on He evolution revealed here have important implications on understanding and improving radiation tolerance over a wide range of extreme conditions.  相似文献   

20.
The effect of Al addition on the microstructure and tensile properties of Ni3(Si,Ti) alloys with an L12 ordered structure, which were fabricated through thermomechanical processing from arc-melted ingots, was investigated. Al was added to a Ni3(Si,Ti) alloy by using two methods such that Al substituted for (1) only Ti and (2) both Ni and Ti along a Ni3(Si,Ti)-Ni3Al pseudo-binary line. In the case of the alloys prepared by the former method, the addition of more than 4 at.% Al resulted in a two-phase microstructure consisting of disordered fcc Ni solid solution dispersions in the L12 matrix, while in the case of the alloys prepared by the latter method, the addition of 4 at.% Al retained the L12 single-phase microstructure. In the case of the 4 at.% Al-added alloys, the room-temperature tensile properties were similar and independent of the alloying methods, whereas the high-temperature yield stress was higher in the alloys prepared by the latter method than in the case of the alloys prepared by the former method. These results suggest that a single-phase microstructure consisting of an entire L12 structure is favorable for obtaining high-temperature tensile properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号