共查询到20条相似文献,搜索用时 12 毫秒
1.
Hany R. Ammar S. Sivasankaran Abdulaziz S. Alaboodi Fahad A. Al-Mufadi 《Advanced Powder Technology》2021,32(2):398-412
This research article focused on developing Al0.3CrFeNiCo0.3Si0.4 nanocrystalline high-entropy alloy (HEA) by mechanical alloying. The initial powders mixture was ball milled for 1 hr (HEA-1 h), 5 hr (HEA-5 h), 15 hr (HEA-15 h) and 25 hr (HEA-25 h) at ball to powder mass ratio (BPR) of 15:1 and a speed of 300 rpm. The mechanical alloying time was varied from 1 to 25 hr to ensure the nanocrystalline nature and attainment of steady state in HEA powders. The structure of the developed HEAs was characterized by means of X-ray diffraction (XRD), Laser particle size analyzer (LPSA), and various electron microscopes (TEM and FEGSEM with EDS). HEA-25hr sample exhibited the crystallite size of 13.8 nm with lattice strain of 0.67% obtained from XRD which matched the result by TEM. The formation of a solid solution (SS) with a uniform elemental dispersion was observed with a major BCC stable structure and a minor FCC structure in HEA-25 h sample. The HEA-25 h sample revealed an average particle size of 386.2 nm (89.8% peak intensity) with Polydispersity Index (PDI) value of 0.364 which confirmed the uniform distribution of particles over a narrow range of particle size. The synthesized powders were consolidated to green compacts with a loading rate of 1 mm/min at different compaction pressures (25, 50, 75, 100, 150, 200, 400, 600, 800, 1000, and 1100 MPa) for examining the powder particles packing. Several compaction models (both linear and non-linear) were discussed to establish the density-pressure relationship of developed HEAs. The results revealed that the milling time has influenced the relative density. HEA-1 h sample was exhibited the relative density of 0.76 whereas HEA-25 h sample was produced the relative density of 0.6 indicating more strength and more amount of strain hardening occurs in MAed HEA-25 sample in addition to the entropy effect for the same composition. 相似文献
2.
The mechanical properties of refractory high entropy alloys(RHEAs) strongly depend on their phase structures. In this work, the phase stability of a BCC TiNbTa0.5ZrAl0.5 refractory high entropy alloy subjected to thermomechanical processing was evaluated, and the effects of phase decomposition on room/high temperature mechanical properties were quantitatively studied. It was found that, the thermomechanical processing at 800℃and 1200℃ leads to phase decomposition in the TiNbTa0.5ZrAl0.5 alloy. The phase decomposition is caused by the rapid rising of free energy of the primary BCC phase. The effect of the precipitates on room temperature strength is determined by the competition between the increasing in precipitation strengthening and the decreasing in solid solution strengthening. But at high temperatures(800-1200℃), the phase decomposition causes significant reduction in strength, mainly due to the grain boundary sliding and the decreasing in solid solution strengthening. 相似文献
3.
Here,a single-track CoCrFeMnNi high entropy alloy(HEA)was successfully fabricated by laser melting deposition(LMD).Combining the experimental observations and numerical simulation,the microstruc-ture and mechanical properties of the as-deposited parts were systematically studied from the perspective of thermo-mechanical history experienced during the LMD process.The strengthening mech-anisms of the LMDed CoCrFeMnNi HEA parts were clarified.The frictional stress strengthening,grain boundary strengthening and dislocation strengthening contributed the whole yield strength of the parts.Dislocation strengthening dominated the strengthening mechanism.It was expected that the establish-ment of the relationship between thermo-mechanical history,microstructure and mechanical properties of the LMDed CoCrFeMnNi HEA could shed more insights into achieving HEA parts with the desired microstructure and high performance. 相似文献
4.
Wenjuan Ge Bo Wu Shouren Wang Shuai Xu Caiyun Shang Zitang Zhang Yan Wang 《Advanced Powder Technology》2017,28(10):2556-2563
CuZrAlTiNi High entropy alloy (HEA) coating was synthesized on T10 substrate using mechanical alloying (MA) and vacuum hot pressing sintering (VHPS) technique. The MA results show that the final product of as-milled powders is amorphous phase. The obtained coating sintered at 950 °C is compact and about 0.9 mm in thickness. It is composed of a couple of face-centered cubic (FCC), one body-centered cubic (BCC) solid solutions and AlNi2Zr phase. The interface strength between coating and substrate is 355.5 MPa measured by three point bending test. Compared with T10 substrate, the corrosion resistance of CuZrAlTiNi HEA coating is enhanced greatly in the seawater solution, which is indicated by the higher corrosion potential, wider passivation region, and secondary passivation. The average microhardness of the coating reaches 943 HV0.2, and is about 3.5 times higher than the substrate, which is mainly ascribed to the uniformly dispersed nano-size precipitates, phase boundary strengthening and solid solution strengthening. Moreover, the wear resistance of the coating is slightly improved in comparison with the substrate. 相似文献
5.
Gauthier Beaurin Jean-Philippe MathieuDaniel Nelias Michel CoretFelix Arnoldi 《Materials Science and Engineering: A》2011,528(15):5096-5105
Plasma-transferred-arc welded Norem02, an iron-based hard-facing alloy, was characterised. Its microstructure and chemical composition were investigated using optical microscopy, scanning electron microscopy (with electron probe microanalysis), electron backscattering diffraction, and X-ray diffraction. The microstructure of the as-deposit alloy consists of a dendritic austenite structure with ferrite islets at dendrites centres, with an interdendritic eutectic region containing austenite, M7C3 and M23C6 carbides and zones containing Mo-rich precipitates. Tensile behaviour of Norem02 was characterised and completed by dilatometry tests in welding process temperature range. No significant phase transformation was detectable during mechanical testing. Different heat treatment cycles of ageing at high temperatures (until 1100 °C) were carried out for different durations. The microstructure of Norem02 heated at 1100 °C was not significantly affected by a short time (15 s) treatment whereas changes were observed for longer durations (2 h), although hardness remains almost unchanged.This work tends to demonstrate that for this alloy metallurgical evolution during the welding process has very little influence on mechanical properties. 相似文献
6.
《Advanced Powder Technology》2023,34(5):104009
AlCoFeNiTiZn high entropy alloy was successfully produced in powder form by the mechanical alloying process. The ball-milled alloyed product was characterized by X-ray diffractometry, scanning electron microscopy, energy dispersive spectroscopy, and transmission electron microscopy techniques, which indicated that after 120 h of milling, the solid solution was formed as predicted by thermodynamic calculations. Mechanical alloying began to form the BCC phase almost at 30 h and the FCC phase after about 30 h. Nucleation and growth were the processes involved in the formation of these phases, as shown by the Johnson-Mehl-Avrami kinetic model. Sintering was then used to fabricate the alloy in bulk metallic form. The powders were cold pressed and sintered after 120 h of mechanical alloying using a tube furnace with a controlled atmosphere at 500 °C. A similar FCC + BCC phase mixture was present after sintering. The sintered sample also contained minor amounts of Gahnite (ZnAl2O4) spinel material. DSC analysis revealed that recrystallization occurred at 280 °C. The as-milled and as-sintered alloys exhibit semi-hard magnetic properties measured by vibrating sample magnetometer (VSM), with saturation magnetization values of 39.14 and 65.78 emu/g, respectively. 相似文献
7.
In this study,a new Al0.9CoFeNi2 eutectic high entropy alloy(EHEA) was designed,and the microstructures as well as the deformation behavior were investigated.The bulk cast Al0.9CoFeNi2 EHEA exhibited an order face-centered cubic FCC(L12) and an order body-centered cubic(B2) dual-phase lamellar eutectic microstructure.The volume fractions of FCC(L12) and B2 phases are measured to be 60 % and 40 %,respectively.The combination of the soft and ductile FCC(L12) phase together with the hard B2 phase resulted in superior strength of 1005 MPa and ductility as high as 6.2 % in tension at room temperature.The Al0.9CoFeNi2 EHEA exhibited obvious three-stage work hardening characteristics and high workhardening ability.The evolving dislocation substructure s during uniaxial tensile deformation found that planar slip dominates in both FCC(L12) and B2 phases,and the FCC(L12) phase is easier to deform than the B2 phase.The post-deformation transmission electron microscopy revealed that the sub-structural evolution of the FCC(L12) phase is from planar dislocations to bending dislocations,high-density dislocations,dislocation network,and then to dislocation walls,and Taylor lattices,while the sub-structural evolution of the B2 phase is from a very small number of short dislocations to a number of planar dislocations.Moreover,obvious ductile fracture in the FCC(L12) phase and a brittle-like fracture in the B2 phase were observed on the fracture surface of the Al0.9CoFeNi2 EHEA.The re search results provide some insight into the microstructure-property relationship. 相似文献
8.
Jincheng Wang Yujing Liu Chirag Dhirajlal Rabadia Shun-Xing Liang Timothy Barry Sercombe Lai-Chang Zhang 《材料科学技术学报》2021,61(2):221-233
Although using elemental powder mixtures may provide broad alloy selection at low cost for selective laser melting(SLM), there is still a concern on the resultant microstructural and chemical homogeneity of the produced parts. Hence, this work investigates the microstructure and mechanical properties of a SLM-produced Ti-35 Nb composite(in wt%) using elemental powder. The microstructural characteristics including ? phase, undissolved Nb particles and chemical homogeneity were detailed investigated.Nanoindentation revealed the presence of relatively soft undissolved Nb particles and weak interface bonding around Nb-rich regions in as-SLMed samples. Solid-solution treatment can not only improve chemical homogeneity but also enhance bonding through grain boundary strengthening, resulting in43 % increase in tensile elongation for the heat-treated Ti-35 Nb compared to the as-SLMed counterpart. The analyses of tensile fractures and shear bands further confirmed the correlation between the different phases and the ductility of Ti-35 Nb. In particular, the weak bonding between undissolved Nb and the matrix in the as-SLMed sample reduces its ductility while the ? grains in solid-solution treated Ti-Nb alloy can induce a relatively stable plastic flow therefore better ductility. This work sheds insight into the understanding of homogenization of microstructure and phases of SLM-produced alloys from an elemental powder mixture. 相似文献
9.
Vikas Shivam Joysurya Basu Vivek Kumar Pandey Yagnesh Shadangi N.K. Mukhopadhyay 《Advanced Powder Technology》2018,29(9):2221-2230
An equiatomic quinary AlCoCrFeNi high entropy alloy (HEA) has been synthesized by mechanical alloying. Milled powder after 30?h shows good chemical homogeneity and refined morphology with a mean particle size of ~4?μm. Solid solution phase with BCC crystal structure (a?=?2.89?±?0.02?Å) has been confirmed from XRD and transmission electron microscopy in the as-synthesized high entropy alloy. The milled alloy powder is not thermally stable. Differential scanning calorimetric (DSC) thermogram of 30?h milled powder exhibits the presence of a small peak at ~600?°C (873?K) with a thermal shift near the peak. This thermal shift indicates the diffusive type of phase transformation in this alloy while heating. The analysis of the in-situ heating X-ray diffraction patterns at various temperatures extends support to the diffusive nature of the phase transformation. Upon heat treatment, the disordered BCC solid solution phase partially transforms to Ni3Al prototype L12 phase which precipitates at a lower temperature (350?°C (623?K)) as observed by in-situ XRD experiments. However, at high temperature annealing (575–800?°C (848–1073?K)) the evolution of a partially ordered BCC phase (B2) with lattice parameter (a?=?2.87?±?0.02?Å), and L12 phase (a?=?3.58?±?0.05?Å), along with tetragonal σ phase (a?=?8.8?Å and c?=?4.53?Å) are observed. Similar types of phases have also been identified after annealing and microwave sintering at 800?°C (1073?K) & 900?°C (1173?K) respectively. The transformation of ordered BCC phases along with two intermetallics such as L12 phase and σ phase suggests that the evolution of the high entropy phase in the milled condition leads to a combination of high entropy and medium entropy phases in the annealed condition. 相似文献
10.
AbstractThe FeCoNiCuSnx alloys with different Sn contents are prepared, the microstructure and the corrosion behaviour of the alloys are investigated. When Sn content is lower than 0.09, FeCoNiCuSnx alloys consist of a single FCC phase. While Sn content of the alloy is 0.09, a small quantity of BCC structure is present. The FeCoNiCuSnx alloys have a wider passive region in the NaOH solution. FeCoNiCuSnx alloys exhibit a better corrosion resistance in NaCl solution than 304 stainless steel, the corrosion resistance of FeCoNiCuSn0.04 alloy is best among all the alloys. The corrosion resistance of FeCoNiCuSnx alloys in NaOH solution is lower than that of 304 stainless steel, the corrosion resistance of FeCoNiCuSn0.03 alloy is best among all FeCoNiCuSnx alloys. 相似文献
11.
《材料科学技术学报》2019,35(8):1523-1531
B4Cp/6061Al composites have become important structural and functional materials and can be fabricated by powder metallurgy and subsequent hot rolling. In this work, the effects of the hot-pressing temperature on microstructures and mechanical behaviors of the B4Cp/6061Al composites were investigated. The results showed that compared with the T4 heat treated B4Cp/6061Al composite hot pressed at 560 °C, the yield strength and failure strain of the composites hot pressed at 580 °C were increased to 235 MPa and 18.4%, respectively. This was associated with the interface bonding strength between the B4C particles and the matrix. However, the reaction products, identified to be MgAl2O4 phases, were detected in the composites hot pressed at 600 °C. The formation of the MgAl2O4 phases resulted in the Mg depletion, thus reducing the yield strength to 203.5 MPa after the T4 heat treatment due to the effect of the solid solution strengthening being weakened. In addition, the variation of hardness and electrical conductivity was mainly related to the Mg content in the matrix. Based on the as-rolled microstructures observed by SEM, SR-μCT and fracture surfaces, the deformation schematic diagram was depicted to reflect the tensile deformation process of the composites. 相似文献
12.
In order to observe the influence of strontium (Sr) modification and hot isostatic pressing (HIP) on an aluminum–silicon cast alloy A357 (AlSi7Mg0.6), the microstructure and the high cycle fatigue behavior of three batches of materials produced by investment casting (IC) were studied. The parts were produced by an advanced IC proprietary process. The main process innovation is to increase the solidification and cooling rate by immersing the mold in cool liquid. Its advantage is to produce finer microstructures. Microstructural characterization showed a dendrite arm spacing (DAS) refinement of 40% when compared with the same part produced by conventional investment casting. Fatigue tests were conducted on hourglass specimens heat treated to T6, under a stress ratio of R = 0.1 and a frequency of 25 Hz. One batch of material was unmodified but two batches were modified with 0.007% and 0.013% Sr addition, from which one batch was submitted to HIP after casting. Results reported in S–N diagrams show that the addition of Sr and the HIP process improve the 106 cycles fatigue strength by 9% and 34% respectively. Scanning electron microscopy (SEM) observation of the fracture surfaces showed a variety of crack initiation mechanisms. In the unmodified alloy, decohesion between the coarse Si particles and the aluminum matrix was mostly observed. On the other hand, in the modified but non HIP-ed alloy, cracks initiated from pores. When the same alloy was subjected to HIP, a competition between crystallographic crack initiations (at persistent slip bands) and decohesion/failure of intermetallic phases was observed. When compared to fatigue strength reported for components produced by permanent mold casting, the studied material are more resistant to fatigue even in the unmodified and non HIP-ed states. 相似文献
13.
Xiaoming Sun Lingzhong Du Hao Lan Jingyi Cui Liang Wang Runguang Li Zhiang Liu Junpeng Liu Weigang Zhang 《材料科学技术学报》2021,73(14):139-144
In this study,a magnetic high entropy alloy (HEA) of CoFeMn1.2NiGa0.8 was designed and prepared by arc melting in order to investigate its mechanical,corrosion and magnetic behavior.The results show that the alloy mainly possesses body-centered cubic (BCC) phase and face-centered cubic (FCC) phase.A high compressive strength of 1450 MPa,a strain of 18.5 % and a relatively low yield strength of 303 MPa in as-cast condition at room temperature can be achieved in the present alloy.In-situ high-energy X-ray diffraction technique was employed to reveal the deformation mechanism of CoFeMn1.2NiGa0.8 under uniaxial compression and the results show that the competition between BCC phase and FCC phase plays a significant role during the compressive process.The corrosion behavior of CoFeMn1.2NiGa0.8 was investigated in 3.5 wt% NaCl solution and it turned out that the alloy possessed good corrosion resistance.At last,the magnetic behavior of the CoFeMn1.2NiGa0.8 alloy was studied and it can present a high saturation magnetization of 94.5 emu/g and a coercivity of 26.4Oe at 4 K.This work indicates that the present CoFeMn1.2NiGa0.8 HEA has promising applications as future magnetic functional materials. 相似文献
14.
AbstractThe plastic deformation of a high entropy alloy Al0.5CoCrFeNi was investigated by instrumented nanoindentation over a broad range of strain rates at room temperature. Results show that the creep behaviour depends on the strain rate remarkably. In situ scanning images showed a significant pile up around the indents, demonstrating that a highly localised plastic deformation occurred in the process of nanoindentation. Under different strain rates, contact stiffness and elastic modulus basically remain unchanged. However, the hardness decreases as indentation depth increases due to indentation size effect. For the same maximum load, serrations became less prominent as the loading rate of indentation increased. Similar serrations have been observed in the current alloy upon quasi-static compression. 相似文献
15.
Ahmad Ostovari Moghaddam Nataliya A.Shaburova Marina N.Samodurova Amin Abdollahzadeh Evgeny A.Trofimov 《材料科学技术学报》2021,77(18):131-162
The novel idea of alloying,which is based on the utilization of multiple principal elements in high concen-trations,has created a novel class of promising materials called high entropy alloys(HEAs).So far,several HEAs with outstanding properties beyond those of conventional alloys have been discovered,and new superior high-entropy alloys are still expected to be developed in the future.However,the fabrication process of HEAs through conventional manufacturing techniques suffers from significant limitations due to the intrinsic requirements of HEAs.Additive manufacturing(AM),on the other hand,has provided new opportunities for fabricating geometrically complex HEAs with the possibility of in situ tailoring of their microstructure features.Considering the growing interest in AM of HEAs during most recent years,this review article aims at providing the state of the art in AM of HEAs.It describes the feedstock requirements for laser based AM techniques.Thereafter,a comprehensive picture of the current state of nearly all HEAs processed by laser metal deposition(LMD),selective laser melting(SLM)and selec-tive electron beam melting(SEBM)is presented.Special attention is paid to the features of AM derived microstructures along with their outstanding properties and underlying mechanisms for various mate-rial processing combinations.The AM of interstitial solute hardening HEAs,HEA matrix composites as well as non-beam based AM of HEAs will also be addressed.The post-AM treatments and the strategies to fabricate defect-free HEAs are summarized.Finally,a conclusion of current state and future prospects of additive manufacturing of HEAs will be presented. 相似文献
16.
《Advanced Powder Technology》2020,31(4):1693-1701
In this investigation, the synthesis of equiatomic AlCoFeNi, AlCoFeNiMo, AlCoFeNiTi, and AlCoFeNiMoTi high entropy alloys, fabricated by mechanical alloying and conventional sintering processes is presented aiming to elucidate the effect of Mo and Ti additions on the properties of the AlCoFeNi base system. X-ray diffraction studies revealed that after 15 h of milling, only BCC and FCC structures were formed. It was also found that by increasing the crystallite size after sintering, phase transformations and composition variations were observed for all the systems studied but BCC and FCC structures prevailed. Further, the addition of the different alloying elements had a significant effect on the microhardness of the HEAs and particularly, the addition of Mo and Ti to form the AlCoFeNiMoTi system presented the highest value of 894 HV0.2. Finally, it was also found that Mo- containing alloys presented considerable porosity. 相似文献
17.
《Advanced Powder Technology》2022,33(4):103519
In this study, an equiatomic CoCrFeMnNi high entropy alloy (HEA) was fabricated by a rapid solidified gas atomization process. Subsequently, the high-energy mechanical milling was carried out to further refine the microstructure of pre-alloyed powder to improve the sintering ability and strengthening of HEAs. The microscopic results show that the powder morphology significantly changed from spherical to flatten, flake, irregular, and partially spherical shape with increasing milling time. The XRD results exhibited HEA bulks consisting of major FCC and minor Cr7C3 phases. The hardness of HEA bulks increased from 270±10 Hv to 450±10 Hv with increasing milling time, while the compressive yield strength increased from 370 MPa to 1050 MPa due to grain boundary strengthening and dislocation strengthening. Meanwhile, the lowest coefficient of friction ~0.283 and specific wear rate ~1.03×10-5 mm3/Nm were obtained for the 60 min milled HEA due to increased surface hardness and oxidation behavior. The developed powder metallurgy approach could be considered as a promising way to improve the strength and wear resistance when compared to the conventional processed CoCrFeMnNi HEAs. 相似文献
18.
V. Soare D. Mitrica V. Badilita F. Stoiciu A.-M. J. Popescu 《Materials Science & Technology》2015,31(10):1194-1200
AbstractHigh entropy alloys are a newly developed class of alloys, which tend to form a single solid solution or a mixture of solid solutions with simple crystal structures. These alloys possess excellent mechanical properties, thermal stability and corrosion resistance. In the present paper, an AlCoCrFeNiTi high entropy alloy was obtained by induction melting, and the influence of the remelting process on the mechanical and corrosion resistance characteristics of the alloy was investigated. Thus, optical and scanning electron microscopy revealed less phase segregation and a fine dendritic structure for the remelted alloy, while corrosion tests indicated that present alloy, in remelted state, has better corrosion resistance than as cast alloy and stainless steel. The Vickers microhardness measurements demonstrated an improvement of the alloy microhardness by remelting process due to the decrease in phase segregation and the increase in dendrite refinement level. 相似文献
19.
《Materials Science & Technology》2013,29(8):1275-1280
AbstractMg alloy AZ31 was spray-formed using an indigenously developed spray atomisation and deposition unit under protective atmosphere and various processing parameters were optimised. The microstructural features of the bell shaped AZ31 spray-formed deposit were characterised using optical microscope, scanning electron microscope/energy dispersive spectrometer, X-ray diffraction and high resolution transmission electron microscope. It was observed that the microstructural features are critically dependent on location in the spray-formed deposits. Under optimised processing conditions, the central region of the bell shaped deposit exhibited minimal porosity and a uniform fine grained equiaxed microstructure with fine Mg17Al12 intermetallics preferably located at the grain boundaries. However, the peripheral regions of the spray-formed deposit indicate higher porosity with distinct microstructural characteristics different from those in the central region. These microstructural features, observed at different locations in the spray-formed deposit, have been analysed and their evolution is discussed in the light of variations in thermal and solidification conditions of the droplets in flight, during impingement as well as those of the deposition surface. 相似文献
20.
《材料科学技术学报》2019,35(6):1175-1183
In this study, the effects of composition and phase constitution on the mechanical properties and magnetic performance of AlCoCuFeNix (x = 0.5, 0.8, 1.0, 1.5, 2.0, 3.0 in molar ratio) high entropy alloys (HEAs) were investigated. The results show that Ni element could lead to the evolution from face centered cubic (FCC), body centered cubic (BCC) and ordered BCC coexisting phase structure to a single FCC phase. The change of phase constitution enhances the plasticity but reduces the hardness and strength. One of the interesting points is the excellent soft magnetic properties of AlCoCuFeNix HEAs. Soft magnetic performance is dependent on composition and phase transition. AlCoCuFeNi1.5 alloy, achieving a better balance of mechanical and magnetic properties, could be applied as structure materials and soft magnetic materials (SMMs). High Curie temperature (>900 K) and strong phase stability below 1350 K of AlCoCuFeNi0.5 alloy confirm its practicability in a high-temperature environment. Atomic size difference (δ) is utilized as the critical parameter to explain the lattice strain and phase transformation induced by Ni addition. 相似文献