共查询到20条相似文献,搜索用时 15 毫秒
1.
《材料科学技术学报》2024,189(22)
High levels of Al and Ti in superalloy compositions normally lead to cracking formation during the laser powder bed fusion process,while these elements are key constituents of strengthening phases.In the cur-rent study,a novel Co-based superalloy with the basic chemical composition of Co-Al-W-Ta-Ti resolved this contradiction,indicating that the part was formed without cracking and simultaneously contained a large amount of strengthening precipitates in the microstructure fabricated via laser powder bed fusion.The printability,microstructures,and mechanical properties of the sample were analysed before and af-ter heat treatment,providing a potential superalloy that can replace Ni-based superalloys fabricated by additive manufacturing in aerospace and other industries with higher temperature and more efficiency. 相似文献
2.
《材料科学技术学报》2024,187(20)
In this work,a high-strength crack-free TiN/Al-Mn-Mg-Sc-Zr composite was fabricated by laser powder bed fusion(L-PBF).A large amount of uniformly distributed L12-Al3(Ti,Sc,Zr)nanoparticles were formed during the L-PBF process due to the partial melting and decomposition of TiN nanoparticles under a high temperature.These L12-Al3(Ti,Sc,Zr)nanoparticles exhibited a highly coherent lattice relationship with the Al matrix.All the prepared TiN/Al-Mn-Mg-Sc-Zr composite samples exhibit ultrafine grain mi-crostructure.In addition,the as-built composite containing 1.5 wt%TiN shows an excellent tensile prop-erty with a yield strength of over 580 MPa and an elongation of over 8%,which were much higher than those of wrought 7xxx alloys.The effects of various strengthening mechanisms were quantitatively estimated and the high strength of the alloy was mainly attributed to the refined microstructure,solid solution strengthening,and precipitation strengthening contributed by L12-Al3(Ti,Sc,Zr)nanoparticles. 相似文献
3.
《材料科学技术学报》2024,191(24)
Laser powder bed fusion(LPBF)is a promising method for manufacturing functional and structural inte-grated Cu-Cr-Zr components.However,the LPBF-processed Cu-Cr-Zr alloys still suffer from the strength-ductility trade-off dilemma,while maintaining high conductivity.Here,LPBF-processed Cu-Cr-Zr alloy with a hierarchical structure was obtained by increasing the Cr and Zr content simultaneously.After ag-ing treatment,the hierarchical structure was composed of melt tracks at the macroscale,coarse grains(31.9±0.1 μm)and fine grains(5.6±0.2 μm)at the microscale,high-density of dislocations and dual precipitates at the nanoscale.The direct aged sample exhibited an excellent combination of strength and ductility(tensile strength was enhanced to 626±1 MPa and uniform elongation of 16.2%±1.1%),which is superior to the traditionally wrought and LPBF-processed Cu-Cr-Zr alloys reported previously.Meantime,a good electrical conductivity of 71.1%±0.3%IACS was also achieved.In addition,the hetero-geneous deformation-induced stress caused by the hierarchical structure not only led to a large increase in yield strength but also promoted tensile ductility. 相似文献
4.
Zihong Wang Xin Lin Nan Kang Jing Chen Hua Tan Zhe Feng Zehao Qin Haiou Yang Weidong Huang 《材料科学技术学报》2021,95(36):40-56
Laser powder bed fusion (L-PBF) of Sc/Zr-modified Al-based alloys has recently become a promising method for developing a new generation of high-performance Al alloys.To clarify the modification roles of Sc/Zr elements,an Al-4.66Mg-0.48Mn-0.72Sc-0.33Zr (wt.%) alloy was processed using L-PBF.The ef-fect of the local solidification condition of the molten pool on the precipitation behavior of primary Al3(Sc,Zr) was analyzed based on time-dependent nucleation theory.it was found that primary Al3(Sc,Zr)inevitably precipitated at the fusion boundary,while its precipitation could be effectively suppressed in the inner region of the molten pool.This subsequently induced the formation of a heterogeneous α-Al matrix.After direct aging,the heredity of solidification microstructure introduced heterogeneous secondary Al3(Sc,Zr) precipitates within α-Al matrix.Owing to the inverse relationship between grain boundary strengthening and precipitation strengthening,the direct-aged sample with dual heterogeneous structures exhibited reduced mechanical heterogeneity,resulting in lowered hetero-deformation-induced hardening.The low strain-hardening capability in the direct-aged sample promoted necking instability while inducing a large Lüders elongation,which effectively improved the tensile ductility. 相似文献
5.
《材料科学技术学报》2024,187(20)
Eutectic high-entropy alloys,composed of FCC/B2 phases with a narrow solidification interval and excel-lent fluidity,have become a new hotspot in additive manufacturing.Nevertheless,their microstructures exhibit significant sensitivity to processing parameters,feedstocks,and composition,ultimately limiting the alloys'engineering applications.Here,a hypereutectic Ala.7CoCrFeNi2.4 alloy with a low cracking sus-ceptibility index was designed by Thermo-Calc calculation and fabricated by laser powder bed fusion.Results show that the as-printed Al0.7CoCrFeNi2.4 alloy manifests a stable cellular structure,coupled with appreciable ultimate tensile strength(≥1200 MPa)and ductility(≥20%)over a wide range of process-ing parameters.After aging at 800 ℃ for 30 min,outstanding strength(1500 MPa)and elongation(15%)were obtained.Considerable mechanical properties after aging stem from a triple strengthening mecha-nism,i.e.,L12 nanoprecipitates and rod-shaped B2 particles within the FCC matrix,along with Cr-enriched spherical nanoparticles in the B2 phase.Meanwhile,hierarchical structure,i.e.,FCC dominated matrix,a discontinuous B2 phase,a precipitation-free zone in the B2 phase,and a K-S orientation relationship be-tween FCC and B2,facilitate to maintain excellent plasticity.These results guide designing HEAs by AM with controllable microstructures and outstanding mechanical properties for industrial applications. 相似文献
6.
《材料科学技术学报》2024,177(10)
Laser powder bed fusion(LPBF)is a highly dynamic and complex physical process,and single-track de-fects tend to accumulate into non-negligible internal defects of parts.The nickel-based superalloy single track was fabricated by LPBF,and its plume and spattering behavior were monitored in situ and recorded in real time based on image recognition and tracking in this study.The relationship among laser energy density,melt flow,plume and spattering behavior during LPBF was discussed.Volumetric energy density had limitations as a design parameter for LPBF.However,we found that plume and spattering behavior can be used as real-time design parameters for the processing of LPBF parts and implemented the initial velocity statistics for LPBF single-track spattering based on the centroid extraction algorithm.The influ-ence of melt flow evolution paths on the spattering and plume behavior in three different melting modes was revealed,and a shift in plume behavior was found in the overlap region of the additive substrate.This study provides a new method for obtaining statistics of spattering-related physical quantities in the melting mode,which is beneficial for the development of processing methods to mitigate the instability of the LPBF process. 相似文献
7.
《材料科学技术学报》2024,197(30)
Compared to a cast AlSi10Mg alloy,a laser powder bed fused(LPBF)AlSi10Mg alloy shows superior yield strength and strain hardening capability.However,the underlying microstructure origin has not been comprehensively understood.In this work,the microstructural evolution of an LPBF AlSi10Mg alloy dur-ing tensile deformation was investigated.Synchrotron X-ray diffraction characterization shows that both stress and strain exhibit significant partition between an Al phase and a Si phase upon tensile deforma-tion.This leads to a significant strain gradient between those two phases,which is evident by the high density of dislocations in the cell boundaries of the deformed alloy.The strain gradient results in long-range internal stress,also known as back stress,in the cell boundaries,and in turn leads to enhanced strength and strain hardening in the LPBF AlSi10Mg alloy.Quantitatively analyses via loading-unloading-reloading tests show that during the tensile deformation,the back stress contributes 135 MPa to the yield strength of the alloy,which continuously increases with increasing the strain beyond the yielding point.This work illuminates the microstructural origin of the back stress in the LPBF AlSi10Mg alloy,i.e.the back stress arises from the stress/strain partition between the Al and Si phases in the cellular structures,and the back stress leads to significant strengthening of the alloy upon tensile deformation.This work may also provide guidance for manipulating the mechanical properties of additively manufactured Al-Si alloys for specific application needs. 相似文献
8.
Laser powder bed fusion(LPBF)yields unique advantages during the fabrication of titanium alloys.In the present work,Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy specimens with excellent mechanical performances were fabricated by LPBF.The as-built specimens displayed relatively high strength and ductility under modest volume energy densities(VEDs),whereas they manifested high strength with low ductility under high VEDs.To investigate the key reason of this phenomenon,the specimens were designed with two VEDs ranges of 60 J/mm3 and 85J/mm3.Special attention was paid to the influences of residual stress and micro-deformation on microstructures and mechanical properties for the first time.The results indicated that the residual stresses and relative density of the 60 J/mm3 range specimens were higher than that of the 85 J/mm3 range specimens.Dislocation multiplication and dislocation movement promoted by the residual stress were hindered by the initial α'phase grain boundary(prior-α'GB),leading to the formation of α'metastable structures.The mean tensile strength and elongation of the 60 J/mm3 range specimens were 1248.1 MPa and 12.3%,respectively,whereas the corresponding values for the 85 J/mm3 range specimens were 1405.3 MPa,5.0%,respectively.During deformation,the strength and ductility of the specimens were first improved by lamellar structures generated from prior-α'phases,and then effectively enhanced by the interaction between the{10-12}twins and dislocations.However,pores significantly reduced the ductility;hence,high VED specimens with large twins and numerous large pores increased the strength and reduce the ductility. 相似文献
9.
《材料科学技术学报》2024,180(13)
Hot isostatic pressing(HIP)is usually applied to reduce the defects including cracks and pores in the materials prepared by laser powder bed fusion(LPBF).In the present research,in order to improve the relative density and mechanical property,HIP was employed on the LPBF-processed Al-Cr-Fe-Ni-V high-entropy alloy(HEA)with microcracks and pores.The microstructure evolution and property improvement induced by HIP were investigated.In the LPBF-processed HEA,the microcracks were caused by residual stress and element segregation,and these microcracks as well as the pores reduced significantly after HIP treatments.Remarkably,HIP temperature has a more critical effect on the microcrack closure than the holding time,thus,microcracks and pores still existed after HIP-1 treatment(1273 K,8 h),while HIP-2 treatment(1473 K,4 h)could close the microcracks significantly.The crack closure was attributed to the interfacial diffusion of the alloying element under high temperature accompanied by high pressure,and the degree of element diffusion at both interfaces of the cracks determined the bonding strength after crack closure.Higher temperatures at high pressure induced more adequate element diffusion and higher bonding strength.The above high temperature and high pressure also induced the growth of the L12 phase and the precipitation of the B2 phase in HEA.Consequently,the tensile strength and elonga-tion of the LPBF-processed HEA after HIP-2 treatment were simultaneously enhanced(80.7%and 222.5%higher than that of LPBF-processed HEA,respectively).This could be attributed to the combined effect of microcrack/pore closure and precipitation strengthening.The strengthening effect of the B2 phase and L1 2 phase accounted for 53%(dislocation by-pass mechanism)and 47%(dislocation shearing mechanism)of the total precipitation strengthening,respectively. 相似文献
10.
Milad Ghayoor Saereh Mirzababaei Anumat Sittiho Indrajit Charit Brian K.Paul Somayeh Pasebani 《材料科学技术学报》2021,83(24):208-218
Thermal stability and high-temperature mechanical properties of a 304L austenitic oxide dispersion strengthened(ODS)alloy manufactured via laser powder bed fusion(LPBF)are examined in this work.Additively manufactured 304LODS alloy samples were aged at temperatures of 1000,1100,and 1200℃for 100h in an argon atmosphere.Microstructure characterization of LPBF 304L ODS alloy before and after the thermal stability experiments revealed that despite the annihilation of dislocations,induced cellular substructure by the LPBF process was partially retained in the ODS alloy even after aging at 1200℃.The size of Y-Si-O nanoparticles after aging at 1200℃increased from 25 to 50 nm.EBSD analysis revealed that nanoparticles retained the microstructure of LPBF 304L ODS and hindered recrystallization and further grain growth.At 600℃and 800℃,the yield stress of the 290 and 145 MPa were measured,respectively,which are substantially higher than 113 MPa,and 68 MPa for 304L at the same temperatures.Furthermore,the creep properties of LPBF 304L ODS alloy were evaluated at a temperature of 700℃under three applied stresses of 70,85,and 100 MPa yielding a stress exponent(n)of~7.7;the minimum creep rate at 100 MPa was found to be about two orders of magnitude lower than found in the literature for wrought 304L stainless steel. 相似文献
11.
The objective of this study is to investigate the possibility of continuous extrusion forming (Conform process) of AZ31 magnesium alloy. The results indicate that continuous extrusion forming can refine the structure, improve the degree of the structure homogeneity and change the crystal orientation of basal plane and hence enhance the ductility but decrease tensile strength at room temperature. The fracture mechanisms of the material prepared by Conform process change from the mixture of ductile and brittle to the full dimpled rupture compared with the conventional extrudate. 相似文献
12.
《材料科学技术学报》2024,183(16)
Ti and its alloys have been broadly adopted across various industries owing to their outstanding proper-ties,such as high strength-to-weight ratio,excellent fatigue performance,exceptional corrosion resistance and so on.Additive manufacturing(AM)is a complement to,rather than a replacement for,traditional manufacturing processes.It enhances flexibility in fabricating complex components and resolves machin-ing challenges,resulting in reduced lead times for custom designs.However,owing to distinctions among various AM technologies,Ti alloys fabricated by different AM methods usually present differences in mi-crostructure and defects,which can significantly influence the mechanical performance of built parts.Therefore,having an in-depth knowledge of the scientific aspects of fabrication and material properties is crucial to achieving high-performance Ti alloys through different AM methods.This article reviews the mechanical properties of Ti alloys fabricated by two mainstream powder-type AM techniques:powder bed fusion(PBF)and directed energy deposition(DED).The review examines several key aspects,en-compassing phase formation,grain size and morphology,and defects,and provides an in-depth analysis of their influence on the mechanical behaviors of Ti alloys.This review can aid researchers and engi-neers in selecting appropriate PBF or DED methods and optimizing their process parameters to fabricate high-performance Ti alloys for a wide range of industrial applications. 相似文献
13.
A novel Al-14.1 Mg-0.47 Si-0.31 Sc-0.17 Zr alloy was applied in the printing process of selective laser melting(SLM),and the corresponding microstructural feature,phase identification,tensile properties and corrosion behavior of the Al Mg Si Sc Zr alloy were studied in detail.As fabricated at 160 W and 200 mm/s,the Mg content of bulk sample decreased to 11.7 wt%due to the element vaporization at high energy density,and the density of this additively manufactured Al Mg Si Sc Zr alloy was 2.538 g/cm3,which is4.2%8.5%lighter than that of other SLM-processed Al alloys.After heat-treated(HT)at 325℃and 6 h,the microstructure was almost unchanged with an alternate distribution of fine equiaxed crystals and coarse columnar crystals.Nano-sized Al3(Sc,Zr)and Mg2Si phases precipitated dispersedly in the Al matrix,and the tensile strength increased from 487.6 MPa to 578.4 MPa for precipitation strengthening and fine grain strengthening.With a fine grain size of 2.53μm,an excellent corrosion resistance was obtained for the as-printed(AP)Al Mg Si Sc Zr alloy.While the corrosion resistance of HT sample decreased slightly for the formation of non-dense oxide layer and pitting corrosion induced by diffuse precipitation distribution.This SLM-printed Al Mg Si Sc Zr alloy with high specific strength,good thermal stability and excellent corrosion resistance has broad prospects for the aerospace and automotive applications. 相似文献
14.
Solid-state welding processes like friction welding and friction stir welding are now being actively considered for welding aluminum alloy AA7075. In this work, friction welding of AA7075-T6 rods of 13 mm diameter was investigated with an aim to understand the effects of process parameters on weld microstructure and tensile properties. Welds made with various process parameter combinations (incorporating Taguchi methods) were subjected to tensile tests. Microstructural studies and hardness tests were also conducted. The results show that sound joints in AA7075-T6 can be achieved using friction welding, with a joint efficiency of 89% in as-welded condition with careful selection of process parameters. The effects of process parameters are discussed in detail based on microstructural observations. 相似文献
15.
Microstructure and mechanical properties of Ti-6Al-4V-5% hydroxyapatite composite fabricated using electron beam powder bed fusion 总被引:1,自引:0,他引:1
César A.Terrazas Lawrence E.Murr Diego Bermudez Edel Arrieta David A.Roberson Ryan B.Wicker 《材料科学技术学报》2019,35(2):309-321
A novel, Ti-6 Al-4 V(Ti64)/Hydroxyapatite(HA at 5% by weight concentration) metal/ceramic composite has been fabricated using electron beam powder bed fusion(EPBF) additive manufacturing(AM): specifically, the commercial electron beam melting(EBM?) process. In addition to solid Ti64 and Ti64/5% HA samples, four different unit cell(model) open-cellular mesh structures for the Ti64/5% HA composite were fabricated having densities ranging from 0.68 to 1.12 g/cm~3, and corresponding Young's moduli ranging from 2.9 to 8.0 GPa, and compressive strengths ranging from ~3 to 11 MPa. The solid Ti64/5%HA composite exhibited an optimal tensile strength of 123 MPa, and elongation of 5.5% in contrast to a maximum compressive strength of 875 MPa. Both the solid composite and mesh samples deformed primarily by brittle deformation, with the mesh samples exhibiting erratic, brittle crushing. Solid, EPBF-fabricated Ti64 samples had a Vickers microindentation hardness of 4.1 GPa while the Ti64/5%HA solid composite exhibited a Vickers microindentation hardness of 6.8 GPa. The lowest density Ti64/5%HA composite mesh strut sections had a Vickers microindentation hardness of 7.1 GPa. Optical metallography(OM) and scanning electron microscopy(SEM) analysis showed the HA dispersoids to be highly segregated along domain or grain boundaries, but homogeneously distributed along alpha(hcp) platelet boundaries within these domains in the Ti64 matrix for both the solid and mesh composites. The alpha platelet width varied from ~5 μm in the EPBF-fabricated Ti64 to ~1.1 m for the Ti64/5%HA mesh strut. The precursor HA powder diameter averaged 5 μm, in contrast to the dispersed HA particle diameters in the Ti64/5%HA composite which averaged 0.5 m. This work highlights the use of EPBF AM as a novel process for fabrication of a true composite structure, consisting of a Ti64 matrix and interspersed and exposed HA domains, which to the authors' knowledge has not been reported before. The results also illustrate the prospects not only for fabricating specialized, novel composite bone replacement scaffolds and implants, through the combination of Ti64 and HA, but also prospects for producing a variety of related metal/ceramic composites using EPBF AM. 相似文献
16.
《材料科学技术学报》2024,178(11)
In this work,selective laser melting(SLM)process is used to prepare the AlNi6TiZr alloy.By analyzing the printing quality and mechanical properties of the printed specimens with different process parameters,the SLM forming window of AlNi6TiZr is obtained.The relative density of the sample printed with 270 W-1100 mm/s(laser energy density:82 J/mm3)reaches 99.7%,exhibiting excellent mechanical properties(yield strength(YS):421.7 MPa;ultimate tensile strength(UTS):480.4 MPa).After an aging treatment of 325 ℃-12 h,the YS and UTS of the sample increased to 494 MPa and 550.7 MPa,respectively.Adding Ni,Ti,and Zr components promoted the generation of multi-phase precipitates in the Al alloy and improved the synergistic strengthening effect of multi-phases.The hard-shell structure(HSS)formed by the Al3Ni phase at the grain boundary significantly strengthened the grain boundary strength.The precipitated Al3(Ti,Zr)phases at the grain boundaries prevent grain growth and dislocation movement.The Al3Ni and Al3(Ti,Zr)phases have good thermal stability that can still maintain excellent enhancement effects at high temperature.AlNi6TiZr alloy has great application prospects in medium and high-temperature environments. 相似文献
17.
Hideki Kakisawa Kazumi Minagawa Kohmei Halada 《Materials Science and Engineering: A》2003,340(1-2):175-180
The relationship between consolidating temperature and the tensile behavior of iron alloy produced from Fe–Cu rapidly solidified powder is investigated. Fe–Cu powder fabricated by high-pressure water atomization was consolidated by heavy rolling at 873–1273 K. Microstructural changes were observed and tensile behavior was examined. Tensile behavior varies as the consolidating temperature changes, and these temperature-dependent differences depend on the morphology of the microstructure on the order of micrometers. The sample consolidated at 873 K shows a good strength/elongation balance because the powder microstructure and primary powder boundaries are maintained. The samples consolidated at the higher temperatures have a microstructure of recrystallized grains, and these recrystallized samples show the conventional relationship between tensile behavior and grain size in ordinal bulk materials. 相似文献
18.
Lijie Zuo Bing Ye Jian Feng Xiangyang Kong Haiyan Jiang Wenjiang Ding 《材料科学技术学报》2018,34(7):1222-1228
The relationship between the as-cast microstructure and mechanical properties of the Al-12Si-3.5Cu-2Ni-0.8Mg alloys produced by permanent mold casting (PMC) and high pressure die casting (HPDC) is investigated. The alloys in both PMC and HPDC consist of Al, Si, Al5Cu2Mg8Si6, Al3CuNi, and Al7Cu4Ni phase. However, the microstructure of the HPDC alloy is significantly refined. Compared to the PMC alloy, the ultimate tensile strength of the HPDC alloy is significantly increased from 244 MPa to 310 MPa, while the elongation shows a reverse trend at room temperature. At low stress and temperature range, slight variations of stress exponent and activation energy indicate that the minimum creep rate is controlled by the grain boundary creep. Then the minimum creep rate is higher for the specimen with the smaller grain size, where grain boundary creep is the dominant creep mechanism. At high stress region, the stress exponent for the PMC alloy and HPDC alloy is 5.18 and 3.07, respectively. The different stress exponents and activation energies measured at high stress and high temperature range indicates that the creep mechanism varies with the casting technologies. 相似文献
19.
Z.H. Yu H.G. Yan X.S. Gong Y.J. Quan J.H. Chen Q. Chen 《Materials Science and Engineering: A》2009,523(1-2):220-225
The as-rolled ZK21 magnesium alloy sheets of 2 mm in thickness were successfully joined by laser welding. The effects of the welding parameters including the laser power and the welding speed on the microstructure and mechanical properties of the joints were investigated. A sound bead, with the ultimate tensile strength (UTS) of 289 MPa and up to 94% of the base metal, was obtained with the optimized welding parameters. The fusion zone (FZ) was characteristic of equiaxed dendritic grains of about 15 μm in size and fine Mg2Zn3 precipitates dispersed among the dendritic arms. Besides, a few columnar grains grew from the fusion boundary epitaxially. The fine grains in the heat-affected zone (HAZ) were ascribed to recrystallization. 相似文献