首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用化学气相渗透(CVI)工艺,在SiC纤维表面沉积BN和BN/SiC复合界面层,对沉积界面层前后纤维的力学性能进行了评价。采用聚合物浸渍裂解(PIP)工艺进行致密化,制得以原纤维、BN界面层和BN/SiC界面层纤维增强的三种Mini-SiCf/SiC复合材料,研究其微观结构和拉伸性能。结果表明:采用CVI工艺制得的界面层厚度均匀、结构致密,其中BN界面层中存在六方相,晶体尺寸为1.76 nm; SiC界面层结晶性较好,晶粒尺寸为18.73 nm;沉积界面层后SiC纤维的弹性模量基本保持不变,拉伸强度降低。与SiCf/SiC相比, PIP工艺制备的SiCf/BN/SiC和SiCf/(BN/SiC)/SiC-Mini复合材料所能承受的最大拉伸载荷和断裂应变明显提升, BN界面层起主要作用。由断面形貌分析可以看出, SiCf/BN/SiC和SiCf/(BN/SiC)/SiC复合材料的纤维拔出明显,说明在断裂时消耗的能量增加,可承受的最大载荷增大。  相似文献   

2.
随着科学技术的不断发展,人类对极端条件下应用的材料的需求持续上升.SiCf/SiC复合材料具有耐高温、高强高韧、耐氧化等优点,成为航空航天领域热端部件的理想候选材料;同时,SiCf/SiC复合材料还具有低活化、抗辐照、高温化学稳定性好等优异性能,在核电领域结构材料的应用具有广阔的前景.常用的SiCf/SiC复合材料的制备方法有化学气相渗透法、先驱体浸渍裂解法、热压烧结工艺和熔融浸渍法,其中化学气相渗透法和先驱体浸渍裂解法两种工艺已经应用于航空发动机静载热端部件的生产,但是这些工艺自身固有的不足在材料制备中依然无法较好地解决,于是近年来出现了混合采用多种工艺来制备SiCf/SiC复合材料的尝试.SiC纤维和基体间需要有一层界面层来偏转裂纹、保护纤维,目前常用的界面材料有热解炭和六方氮化硼涂层,由于单一涂层较难满足材料在多种复杂条件下的应用需求,针对涂层改进的新方法和新思路层出不穷.相对于传统烧结工艺,新型烧结方式如微波烧结和放电等离子烧结等在烧结速度、温度均匀性等方面展示出巨大的优势,为陶瓷基复合材料的制备提供了新的选择.为了进一步提升SiCf/SiC复合材料的性能,近年的研究工作主要集中在对SiCf/SiC复合材料的制备方法的优化、纤维/基体界面层的创新和对烧结技术的选择等方面.本文从这些方面对SiCf/SiC复合材料的研究进展进行了详细的归纳和介绍.  相似文献   

3.
采用流延-化学气相渗透(TC-CVI)工艺制备SiC晶须(SiC_W)/SiC层状陶瓷复合材料,研究了SiC_W含量对层状陶瓷复合材料力学性能和微观结构的影响,探讨了SiC_W/SiC层状陶瓷复合材料的强韧化机制。结果表明:TC-CVI工艺能够有效提高复合材料中晶须含量(40vol%),减少制备过程对晶须损伤,所制备的SiC_W/SiC层状陶瓷复合材料具有合适的层内及层间界面结合强度。随着SiC_W含量增加,层状陶瓷复合材料的密度和力学性能均有明显提高。含40vol%晶须的SiC_W/SiC层状陶瓷复合材料的密度、弯曲强度和断裂韧性均比含25vol%晶须的分别提高了8.4%、30.8%和26.7%。断口形貌中能够观察到层间及层内的裂纹偏转,层内的裂纹桥接和晶须拔出等,这些为主要的增韧机制。高含量SiC_W及合适的层间和层内界面结合强度,对提高SiC_W/SiC层状陶瓷复合材料强韧性有明显作用。  相似文献   

4.
利用化学气相渗透法(CVI)在束丝SiC纤维表面沉积BN和BN/SiC两种界面层,并将其制备成mini碳化硅复合材料.应用扫描电镜(SEM)观察了界面层和mini复材的表面和断口形貌,应用原子力显微镜(AFM)表征了界面层的表面粗糙度.采用X射线衍射(XRD)和透射电镜(TEM)对界面层结构进行表征,利用电子万能试验机对mini复材的拉伸性能进行分析.结果表明,CVI方法制备的BN表面光滑,为层状-岛状生长,与基体结合较弱,其mini复材拉伸强度为970 MPa.热处理后的BN结晶度增强,表面粗糙度增大,与基体的结合略微增强,其mini复材拉伸强度有所提升,为1050 MPa.BN/SiC界面层表面粗糙,为岛状生长,与基体的结合较强,其mini拉伸强度最高,为1720 MPa.  相似文献   

5.
以国产KD-1型SiC纤维为增强体,采用化学气相沉积和酚醛树脂浸渍裂解获得两种碳源的多孔SiCf/C,通过气相渗硅工艺制备了KD-1 SiCf/SiC复合材料,对复合材料的微观结构和力学性能进行了研究.结果表明:不同碳源的多孔SiCf/C,经过气相渗硅得到SiCf/SiC复合材料的断裂韧性相差较大,分别为12.9,2.0MPa·m1/2.而对于酚醛树脂浸渍裂解制备的高孔隙率SiCf/C中间体,经过气相渗硅得到SiCf/SiC复合材料的密度及力学性能明显高于由低孔隙率SiCf/C得到的SiCf/SiC复合材料.  相似文献   

6.
连续Si3 N4纤维以其优异的热稳定性、高温力学性能和介电性能,被认为是耐高温陶瓷基透波复合材料的候选材料之一.采用连续Si3 N4纤维为增强体,以BCl3+NH3+H2+Ar反应体系,利用化学气相沉积工艺在Si3 N4纤维表面制备了BN界面层,并以聚硅硼氮烷为陶瓷先驱体,通过先驱体浸渍裂解工艺制备了Si3 N4/SiBN复合材料.研究了CVD BN界面层的合成及其对Si3 N4/SiBN复合材料弯曲性能的影响.结果表明:在Si3 N4纤维表面获得了均匀致密的BN界面层,该界面层有效改善了复合材料中纤维/基体的界面结合力,复合材料显示出典型的韧性断裂特征.当界面层的厚度为200 nm时,Si3 N4/SiBN的弯曲强度和断裂韧性分别为182.3 MPa和17.3 MPa·m1/2,比无涂层的复合材料分别提高了59.6%和94.4%.  相似文献   

7.
“CVI+压力PIP”混合工艺制备低成本 C/SiC复合材料   总被引:1,自引:0,他引:1  
以低成本填料改性有机硅浸渍剂作为先驱体,采用"化学气相渗透法+压力先驱体浸渍裂解法"(CVI+P-PIP)混合工艺制备了低成本C/SiC陶瓷复合材料.研究了浸渍剂裂解机理,探讨了界面涂层对复合材料性能的影响.结果表明,填料改性有机硅浸渍剂裂解产物结构致密、陶瓷产率高;压力可提高填料改性有机硅浸渍剂的致密效率.混合工艺充分利用沉积SiC基体和裂解SiC基体的致密化特点,有效缩短了制备周期.C/SiC/C三层界面不仅可降低纤维/基体之间结合强度界面,提高了复合材料韧性;而且减缓了氧化性气体扩散到碳纤维表面的速度,改善了复合材料的抗氧化性能.复合材料的抗弯强度达到455MPa,断裂韧性达到15.7MPa·m-1/2.在1300℃空气中氧化3h,复合材料失重仅8.5%.  相似文献   

8.
研究了界面过渡层对SiC/Al双连续相复合材料性能的影响.结果表明,界面过渡层降低了复合材料中的残余应力,改善了界面的结合,提高了复合材料的压缩性能.当界面过渡层中SiC的体积分数接近50%时,复合材料的压缩强度最高,塑性最好,但弹性模量较低.界面过渡层的存在改变了复合材料的弯曲断裂机制.SiC原始泡沫增强的复合材料在断裂时,增强体SiC泡沫先断裂,基体后破坏,断裂表面凹凸不平;含界面过渡层的复合材料断裂时,过渡层的外侧界面先被撕开,内侧界面结合良好,基体与增强体同时断裂,断口平整.  相似文献   

9.
赵爽  杨自春  周新贵 《材料导报》2018,32(16):2715-2718
通过先驱体浸渍裂解工艺结合化学气相渗透工艺(PIP+CVI)制备了二维半(2.5D)和三维(3D)编织结构的碳化硅纤维增强碳化硅基(SiC/SiC)复合材料,对两者的密度、热导率、力学性能以及微观结构等进行了测试分析。结果表明,PIP+CVI工艺制备的SiC/SiC复合材料具有较低的密度(1.98~2.43g·cm-3)和热导率(0.85~2.08 W·m~(-1)·K~(-1)),初期CVI纤维涂层能够提高纤维-基体界面剪切强度(~141.0 MPa),从而提高SiC/SiC复合材料的力学性能,后期CVI整体涂层明显提高了2.5DSiC/SiC复合材料的密度、热导率和力学性能,对3DSiC/SiC复合材料性能的影响不明显。  相似文献   

10.
SiCf/SiC陶瓷基复合材料在航空航天领域具有广阔的应用前景,其界面层设计是研究重点。研究表明,复合界面层可以有效提升陶瓷基复合材料的抗氧化性能,但其对材料力学性能及损伤机制的影响尚不明确。本研究利用化学气相渗透法(CVI)制备得到具有BN及(BN/SiC)3复合界面层的小复合材料,探究了复合界面层对SiCf/SiC复合材料失效机制的影响。基于两种力学加载实验结合声发射探测分析了两种界面层小复合材料的损伤过程。实验结果表明,利用CVI制备的小复合材料界面结构清晰,基体致密。两类小复合材料均具有SiCf/SiC陶瓷基复合材料的典型力–位移曲线,不同界面层小复合材料损伤过程具有不同的力声特征。通过两类力学加载试验的声发射特征能够有效分析小复合材料各阶段损伤发展情况。本实验中BN及(BN/SiC)3复合界面层SiCf/SiC小复合材料最大承受载荷分别为139和160 N,复合界面层小复合材料中的多层界面具有更强的偏转裂纹能力,降低裂纹延伸至纤维的速度,进而提高...  相似文献   

11.
CVD SiC涂层SiC纤维增强SiC复合材料的研究   总被引:2,自引:0,他引:2  
本文采用CVD技术对KD-1 SiC纤维作涂层处理,再通过聚碳硅烷浸渍裂解法制备单向SiCf/SiC复合材料.研究了不同沉积时间的CVDSiC涂层对SiCf/SiC复合材料性能的影响,同时运用SEM研究了SiC纤维表面SiC涂层的形貌.结果表明:经过5小时CVDSiC涂层SiCf/SiC复合材料具有良好的力学性能和抗氧化性能.  相似文献   

12.
杨振明  姜春海  田冲  张劲松 《功能材料》2012,43(21):2893-2896
利用硅改性树脂中硅元素和碳元素分子级均匀分散的特征,以硅改性树脂为涂层原料,在泡沫碳化硅陶瓷表面原位生成了多孔碳化硅活性涂层。在加入适量活性炭颗粒的条件下,在泡沫碳化硅陶瓷表面得到了性能良好的纳米碳化硅涂层,适合作为催化剂载体。相反,在没有活性炭颗粒加入的情况下,所得涂层龟裂、结合强度低,且碳化硅团聚成片,比表面积小。  相似文献   

13.
For reaction sintered SiC (RSSC) prepared at 1600°C by conventional melt infiltration technique, experimentation with two different particle sizes of initial SiC, viz., 0.2 and 23.65 μm, showed that the large SiC particles remained unaltered and the sizes of the fine-grained SiC increased several times yielding well-developed faceted crystals in the final material. To study the process further, compacts of SiC powder of particle sizes varying between 0.20 and 8.99 μm were reacted with pure Si at 1600°C and the resulting SiC–Si boundaries were studied by optical microscopy. A distinct boundary layer with no penetration of Si in the compact of SiC of 0.2 μm was observed and the width of the SiC–Si boundary was found to be increasing linearly with time. Detailed SEM examination establishes the growth of the SiC upto around 4 μm from 0.2 μm starting powder. No such growth was observed in the case of starting SiC powder coarser than 0.2 μm. The growth of SiC is explained in terms of solution-reprecipitation mechanism.  相似文献   

14.
The long-term strength σt of SiC fibers coated with SiC nanoparticles is approximately equal to30·10 7 pa for t=200h at 1500K. The long-term strength of coated fibers is lower than for fibers without coatings by 25–50%. Owing to their enhanced reaction characteristics, the nanocrystalline SiC coatings are sintered at T<1500K, which is lower than the temperature of sintering of self-bonded SiC by 500 K. For this reason, we can recommend coated SiC fibers for manufacturing SiC/SiC composites by sintering at a temperature of 1500K because, at this temperature, SiC fibers do not degrade. Shevchenko National University, Kiev, Ukraine. Translated from Problemy Prochnosti, No. 1, pp. 95 – 99, January – February, 1998.  相似文献   

15.
A tension–tension fatigue damage analysis was performed using 3-d silicon carbide fibre reinforced (orthogonal) silicon carbide matrix (SiC/SiC) composites. Two groups of SiC/SiC specimens were tested. The first group consisted of samples without any oxidation protective top layer coating, whilst the latter one contained samples covered with a well fitting, chemical vapour deposited (CVD) SiC system. This coating is necessary for the material to sustain high temperatures. Both the coated and uncoated material had a fibre volume fraction of about 36% equally distributed in three rectangular directions. Load control fatigue tests were conducted at room temperature. The fatigue life was found to decrease by increasing the cyclic stress level. A power-law equation is proposed, which correlates the applied maximum stress during the fatigue test with the number of cycles to failure. In general, the presence of the coating layer decreases the static strength of the material. However, the nominal maximum cyclic stress for which the endurance fatigue limit appeared, remained unaffected by the presence of the oxidation protective SiC coating. Microstructural examination has also been performed on the fractured specimens and it reveals some of the failure mechanisms of the composite that appeared under quasi-static and dynamic loading.  相似文献   

16.
17.
18.
The mechanical behaviour of two woven composites C/SiC and SiC/SiC was investigated at room temperature. The non-linear load-displacement curves and the damaging process were closely related to the specific structure of the composites, consisting of a network of impregnated bundles of fibres. The damage in the bundles proceeded by multiple cracking in the matrix before fibre failure, and dictated the response to the applied load. Other mechanisms, consisting mainly of distortions in bundles and their framework, induced a residual deformation and an energy dissipation. The behaviour was characterized according to the damaging process. Stress-electric strain curves revealed a mechanical response similar to those observed in unidirectional composites, although some effect of the specimen geometry on the curves was observed. Residual strains were similar in tensile and bending conditions. The work of fracture was consistently described by a volumetric rate of energy absorption, related to the applied strain, but the respective contributions of different damage mechanisms could not be determined.  相似文献   

19.
A coupled electro-mechanical model was developed to predict the mechanical behavior of woven SiC/SiC ceramic matrix composites and electrical resistance response to mechanical damages in the composites. The matrix is explicitly included in the model such that the matrix cracking and fiber break can be linked to the electrical resistance change during loading. The results show that the electrical resistance increases linearly with an increase of matrix crack density and the number of fiber breaks. The predictions are compared to the experimental results on 2D woven SiC/SiC ceramic composites. With proper materials parameters input, the models can accurately predict the stress–strain curve and electrical resistance change during the loading. The model is further compared to an analytical solution of electromechanical coupling to get an insight into the electrical–mechanical interaction mechanisms in the composites.  相似文献   

20.
碳化硅纤维增强碳化硅复合材料(SiC/SiC)是极具前景的高温结构材料。通过先驱体浸渍裂解(PIP)工艺分别制备了PyC界面和CNTs界面SiC/SiC复合材料, 对两种SiC/SiC复合材料的整体力学性能以及界面剪切强度等进行了测试表征, 并对材料中裂纹的产生与扩展进行了原位观测。结果表明, 两种界面SiC/SiC复合材料弯曲强度相近, 但PyC界面SiC/SiC复合材料的断裂韧性约为CNTs界面SiC/SiC复合材料的两倍。在PyC界面SiC/SiC复合材料中, 裂纹沿纤维-基体界面扩展, PyC涂层能够偏转或阻止裂纹, 材料呈现伪塑性断裂特征; 而在CNTs界面SiC/SiC复合材料中, 裂纹在扩展路径上遇到界面并不偏转, 初始裂纹最终发展为主裂纹, 材料呈现脆性断裂模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号