首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
目的以甲壳素纳米纤维、多壁碳纳米管、碳布、吡咯为原料,制备柔性超级电容器复合电极薄膜。方法先利用化学氧化法提高碳布的表面粗糙度,再通过真空抽滤在碳布表面附着甲壳素纳米纤维和多壁碳纳米管,以增加碳布的负载空间,最后通过原位聚合吡咯来增加复合薄膜的电容性能。同时制备氧化碳布/聚吡咯复合薄膜作为对照组。结果制成的氧化碳布/甲壳素纳米纤维/多壁碳纳米管/聚吡咯复合薄膜在扫描速率为5 mV/s时,质量比电容达到了307 F/g,是氧化碳布/聚吡咯质量比电容(175 F/g)的1.75倍;在电流密度为2 A/g时,经过2000次循环后电容保留率为72.3%,库仑效率为73.8%。结论制备的氧化碳布/甲壳素纳米纤维/多壁碳纳米管/聚吡咯薄膜具有较高的比电容和循环稳定性,可以作为超级电容器电极材料应用于物联网行业的有源储能包装。  相似文献   

2.
杨旖旎  冯前  李大纲 《包装工程》2019,40(1):100-105
目的以纳米纤维素/碳纤维复合膜为导电基底,制备纳米纤维素/碳纤维-聚苯胺/碳纳米管超级电容器电极。方法利用超声处理和真空抽滤制备纳米纤维素/碳纤维复合膜;利用原位聚合法制备聚苯胺和聚苯胺/碳纳米管复合材料;通过真空抽滤法制备纳米纤维素/碳纤维-聚苯胺电极和纳米纤维素/碳纤维-聚苯胺/碳纳米管电极。结果在纳米纤维素/碳纤维复合膜中,碳纤维形成了互穿导电网络结构,是良好的超级电容器电极导电基体;纳米纤维素/碳纤维-聚苯胺/碳纳米管电极具有良好的电化学性能,在扫描速率为5 mV/s的条件下,质量比电容为380.74 F/g,且在1000次循环测试后,电容保留率为88.05%。结论以纳米纤维素/碳纤维导电复合膜作为基体制备的纳米纤维素/碳纤维-聚苯胺/碳纳米管电极具有良好的电化学性能,可以作为超级电容器电极。  相似文献   

3.
目的以竹粉为原料制备纳米纤维素,并将其作为基底材料制备纳米纤维素/碳纳米管/纳米银线复合电极,应用于柔性超级电容器。方法采用化学机械处理法,将竹粉通过化学处理以及研磨、超声等处理,制备成纳米纤维素悬浮液;分别将多壁碳纳米管和纳米银线超声分散于溶剂中;最后,通过层层自组装制备纳米纤维素/碳纳米管/纳米银线复合电极,同时,作为对照组,制备纳米纤维素/碳纳米管复合电极。结果纳米纤维素纤丝的直径大约为30~100 nm,相互之间缠绕成网状结构,是很好的支撑材料,纳米纤维素/碳纳米管/纳米银线复合电极具有很好的成膜性和电化学性能,在扫描速率为30 m V/s时,面积比电容达到77.95 m F/cm~2。结论以纳米纤维素为基底,通过层层自组装方法制备的纳米纤维素/碳纳米管/纳米银线复合电极具有较好的电化学性能,可作为柔性超级电容器的电极。  相似文献   

4.
Co3O4作为超级电容器材料,因具有理论比容量高、价格成本低、无毒环保、储量丰富等优点而备受关注,但制备出电化学性能优异的Co3O4超级电容器材料仍是个巨大的挑战。通过与导电性突出的碳材料复合,增加了电子/离子的传输速度,提高了Co3O4超级电容器材料电化学性能。综述了Co3O4/碳复合超级电容器材料的合成方法,归纳了各个方法的优缺点,分析了影响Co3O4/碳复合超级电容器电化学性能的因素,最后,指出了Co3O4/碳复合超级电极材料所面临的问题和发展前景。  相似文献   

5.
碳基材料(如碳纳米管、石墨烯和介孔碳)是典型的电化学双电层超级电容器电极材料.虽然碳基材料表现出优异的电化学稳定性能,但其比电容较低.因此,常用赝电容材料与其复合.赝电容材料中,二氧化锰(MnO2)因理论比电容高、价格低、储量丰富和环境友好等特点,被广泛应用于超级电容器中.然而,MnO2导电性能差、在循环充放电过程中相...  相似文献   

6.
超级电容器与锂电池相比具有更高的循环稳定性以及更高的能量密度。提高超级电容器电极材料化学稳定性,增大离子吸附比表面积,以获得更好的电化学性能,成为超级电容器研究领域的热点。以湿化学还原法制备的石墨烯为基底,采用原位电化学沉积法制成了石墨烯/聚吡咯导电复合材料超级电容器电极。通过扫描电子显微镜(SEM)对电极的微观形貌进行了观察,利用电化学工作站对组装的超级电容器电化学性能进行了系统表征,同时探讨了沉积浓度和沉积时间对电化学性能的影响。结果表明,在0.2 mol/L吡咯溶液中沉积时间为22.5 min制备出的石墨烯/聚吡咯导电复合材料电极的比电容可达388 F/g,表现出优良的超级电容器电化学性能。  相似文献   

7.
超级电容器与锂电池相比具有更高的循环稳定性以及更高的能量密度。提高超级电容器电极材料化学稳定性,增大离子吸附比表面积,以获得更好的电化学性能,成为超级电容器研究领域的热点。以湿化学还原法制备的石墨烯为基底,采用原位电化学沉积法制成了石墨烯/聚吡咯导电复合材料超级电容器电极。通过扫描电子显微镜(SEM)对电极的微观形貌进行了观察,利用电化学工作站对组装的超级电容器电化学性能进行了系统表征,同时探讨了沉积浓度和沉积时间对电化学性能的影响。结果表明,在0.2mol/L吡咯溶液中沉积时间为22.5min制备出的石墨烯/聚吡咯导电复合材料电极的比电容可达388F/g,表现出优良的超级电容器电化学性能。  相似文献   

8.
超级电容器碳纳米管及其复合电极材料最新研究进展   总被引:1,自引:0,他引:1  
邓梅根  卢云  张治安  胡永达  杨邦朝 《材料导报》2004,18(Z1):89-90,102
超级电容器作为一种新型储能元件,具有比传统电容器高得多的能量密度和比电池大得多的功率密度以及超长的使用寿命等特点.碳纳米管由于具有良好的导电性和高比表面积而成为超级电容器的理想电极材料.综述了用作超级电容器电极材料的碳纳米管及其复合材料的结构、特性、电化学性能和基于该材料的超级电容器研究的新成果.  相似文献   

9.
近年来,废弃碳纤维复合材料数量急剧增加,对人类的生存环境造成了严重破坏。为了实现废弃复材中树脂的高值化利用,本研究采用一步碳化法制备了废弃树脂基碳材料,研究了碳化温度对碳材料结构与性能的影响,并将碳材料制备成超级电容器电极,研究电极的电化学性能。分别采用扫描电子显微镜(SEM)、比表面积测试仪、傅里叶红外光谱仪(FTIR)、X射线光电子能谱(XPS)、拉曼测试仪(Raman)、差示扫描量热仪(DSC)和热重分析仪(TGA)对碳材料的表面形貌、孔性能、化学组分、石墨化程度以及形成原理进行了分析。结果表明:当碳化温度为800℃时制备的碳材料具有分级多孔的结构,孔性能和石墨化程度达到最佳,所制备的超级电容器电极表现出优异的电化学性能,在1 A/g电流密度下比电容高达299 F/g,经10 000次充放电循环后,比电容仍高达296.6 F/g,循环稳定性优异。  相似文献   

10.
采用化学气相沉积法合成晶须状碳纳米管(WMWCNTs)和碳纳米管(MWCNTs)。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、拉曼光谱仪(Raman)对其进行详细分析。以纸纤维为基体材料,晶须状碳纳米管和碳纳米管为功能材料,通过真空抽滤制得碳(WMWCNTs)/碳(MWCNTs)/纤维素复合纸。采用两电极测试体系,通过循环伏安及恒流充放电方法对其超级电容器性能进行测试。在扫描速率为1mV/s时,碳/碳/纤维素复合纸电极的比容量达到120F/g。在电流密度为0.4A/g时,碳/碳/纤维素复合纸电极比容量值可达51.5F/g。在电流密度为0.4~1.4A/g范围时,最大比能量和比功率分别为63.7Wh/kg和3.99kW/kg,表现出良好的超级电容器性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号