首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
概述了原子转移自由基聚合(ATRP)的机理及其在引发体系、单体、反应温度和介质等方面的进展;着重论述了ATRP在进行聚合物分子设计,制备具有特定结构的聚合物,如无规、梯度和交替共聚物,嵌段共聚物,末端官能团聚合物,接枝和梳状聚合物,星型高支化聚合物等方面的应用。  相似文献   

2.
概述了原子转移自由基聚合(ATRP)的机理及其在引发体系、单体等方面的进展。论述了ATRP反应在进行聚合物分子设计,制备具有特定结构的聚合物,如梯度共聚物,嵌段共聚物,末端官能团聚合物,接枝聚合物,星型超支化聚合物,响应型聚合物等方面的应用。  相似文献   

3.
原子转移自由基聚合反应机理及其应用   总被引:1,自引:0,他引:1  
概述了有关原子转移自由基聚合(ATRP)的反应机理.研究成果表明,应用ATRP法进行聚合反应可以制备窄分子量分布的聚合物、嵌段共聚物、接技聚合物、无规共聚物、星型聚合物等.ATRP在聚合反应领域具有非常广阔的应用前景.  相似文献   

4.
采用原子转移自由基聚合(ATRP)、反相ATRP(R-ATRP)可以对聚合物进行分子设计,制备结构和相对分子质量可控的均聚物、嵌段共聚物、接枝和梳状聚合物以及星形和一些高支化的聚合物.该类反应中,催化体系是研究的重点和热点.着重介绍了ATRP和R-ATRP聚合催化体系的研究进展,并且针对其催化剂脱除困难的问题,介绍了催化剂分离方面的最新研究进展.  相似文献   

5.
原子转移自由基聚合(ATRP)的研究进展   总被引:1,自引:0,他引:1  
介绍了可以实现活性聚合的ATRP、RATRP、AGET ATRP和ARGET ATRP 4种原子转移自由基聚合的机理,综述了原子转移自由基聚合技术在合成两亲性嵌段共聚物、接枝聚合物和星型共聚物等中的研究进展。  相似文献   

6.
原子转移自由基聚合在聚合物分子设计中的应用   总被引:1,自引:0,他引:1  
原子转移自由基聚合反应 ( ATRP)是一种新的活性自由基聚合方法 ,自 1995年提出后 ,引起高分子合成化学及工业界的关注。本文详细介绍了 ATRP在端功能基聚合物、大分子单体、嵌段共聚物、接枝共聚物、星形聚合物、梯度共聚物、超支化聚合物等聚合物分子设计中的应用  相似文献   

7.
原子转移自由基聚合的近期研究进展   总被引:4,自引:0,他引:4  
华曼  陈明清  刘晓亚  杨成 《化学世界》2004,45(2):103-106,95,111
对原子转移自由基聚合(ATRP)的引发体系、催化体系及反应介质进行了全面的综述。介绍了四种不同催化剂脱除技术;结合最新的研究成果,介绍了ATRP在进行聚合物分子设计尤其是在制备嵌段共聚物方面的进展。  相似文献   

8.
原子转移自由基聚合(ATRP)技术是一种新型的可控/活性聚合技术,可有效地对聚合物的分子结构进行设计,制备出各种不同性能、不同组成、不同功能化的结构确定的聚合物。综述了利用ATRP技术合成树枝状-线性嵌段共聚物、类树枝状聚合物(dendrimer-like polymer)、具有刺激-响应性末端基团的树枝状聚合物、树枝状-星型嵌段共聚物和基于树枝状聚合物的聚合物刷的研究进展。  相似文献   

9.
采用原子转移自由基聚合(ATRP)反应合成了甲基丙烯酸正丁酯/N-异丙基丙烯酰胺嵌段共聚物(P(n-BMAb-NIPAM))。考察了引发剂、催化剂、反应温度等对聚合反应结果的影响,最终确定较为合适的反应条件,制备出分子量确定、分子量分布较窄的大分子引发剂,并成功引发第二单体继续通过ATRP反应,获得P(nBMA-b-NIPAM)。研究结果表明:所确定的ATRP反应体系能实现n-BMA的可控聚合,获得末端带溴原子的聚甲基丙烯酸正丁酯(P(n-BMA-Br))作为大分子引发剂继续通过ATRP反应引发N-异丙基丙烯酰胺(NIPAM),最后获得分子量确定、分子量分布较窄的嵌段共聚物P(n-BMA-b-NIPAM)。实验证明,利用高价态铜络合体系可以实现单体的可控聚合,而且可以保持聚合物末端较高的卤官能度。  相似文献   

10.
原子转移自由基聚合(ATRP)是合成嵌段共聚物的有效途径。本文介绍了原子转移自由基聚合(ATRP)的基本原理以及ATRP在反应体系,实验方案的研究进展,并且概述了近年来采用ATRP制备嵌段共聚物的研究进展。  相似文献   

11.
原子转移自由基聚合进展   总被引:3,自引:0,他引:3  
综述了原子转移自由基聚合(ATRP)的发展:引发剂、过渡金属络合物的发展,低温下的反应可节省能源,水分散体系的ATRP也是发展的方向ATRP可合成结构清晰的嵌段、接枝、星型、超支化高聚物,大大拓宽了高聚物的应用范围。  相似文献   

12.
Atom transfer radical polymerization (ATRP) is currently one of the most often used synthetic polymerization methods to prepare well-defined polymers with complex architecture. This review covers some fundamentals of copper-based ATRP, presents basic structure–reactivity correlation for initiators and catalyst complexes and discusses the radical nature of reactive intermediates. New ATRP initiating processes with ppm amounts of copper catalysts and various reducing agents are described together with recent electrochemically controlled ATRP and polymerization in aqueous homogeneous and dispersed media. Examples of polymers with precisely controlled architecture are presented together with the effect of variable amounts of catalysts on molecular weight distribution and morphology of nanostructured block copolymers. Some current and forthcoming applications of polymers made by ATRP are presented.  相似文献   

13.
The design of efficient gene delivery vectors is a challenging task in gene therapy. Recent progress in living/controlled radical polymerizations (LRPs), in particular atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) polymerization providing a means for the design and synthesis of new polymeric gene vectors with well-defined compositions, architectures and functionalities is reviewed here. Polymeric gene vectors with different architectures, including homopolymers, block copolymers, graft copolymers, and star-shaped polymers, are conveniently prepared via ATRP and RAFT polymerization. The corresponding synthesis strategies are described in detail. The recent research activities indicate that ATRP and RAFT polymerization have become essential tools for the design and synthesis of advanced, noble and novel gene carriers.  相似文献   

14.
Jun Yoo 《Polymer》2011,52(12):2499-2504
The synthesis of comb block copolymers by ring opening metathesis polymerization (ROMP), ring opening polymerization (ROP), and atom transfer radical polymerization (ATRP) is described. Block copolymers were synthesized by the ROMP of oxanorbornene and norbornene monomers followed by hydrogenation of the olefins along the backbone. One block of these diblock copolymers possessed initiators either for the ROP of (3S)-cis-3,6-dimethyl-1,4-dioxane-2,5-dione or the ATRP of butyl acrylate. The synthesis and characterization of comb polymers with arms composed of poly(lactic acid) and poly(butyl acrylate) are described. These polymers had well-defined peaks in the size exclusion chromatography spectra which indicated that no homopolymers were synthesized. A comb block copolymer with polymeric arms of poly(styrene-b-vinylpyridine) is described. Vinylpyridine was polymerized from a comb polymer with poly(styrene) arms by ATRP at high dilution of the comb polymer.  相似文献   

15.
Katrien V. Bernaerts 《Polymer》2005,46(19):8469-8482
A new set of block copolymers containing poly(methyl vinyl ether) (PMVE) on one hand and poly(tert-butyl acrylate), poly(acrylic acid), poly(methyl acrylate) or polystyrene on the other hand, have been prepared by the use of a novel dual initiator 2-bromo-(3,3-diethoxy-propyl)-2-methylpropanoate. The dual initiator has been applied in a sequential process to prepare well-defined block copolymers of poly(methyl vinyl ether) (PMVE) and hydrolizable poly(tert-butyl acrylate) (PtBA), poly(methyl acrylate) (PMA) or polystyrene (PS) by living cationic polymerization and atom transfer radical polymerization (ATRP), respectively. In a first step, the Br and acetal end groups of the dual initiator have been used to generate well-defined homopolymers by ATRP (resulting in polymers with remaining acetal function) and living cationic polymerization (PMVE with pendant Br end group), respectively. In a second step, those acetal functionalized polymers and PMVE-Br homopolymers have been used as macroinitiators for the preparation of PMVE-containing block copolymers. After hydrolysis of the tert-butyl groups in the PMVE-b-ptBA block copolymer, PMVE-b-poly(acrylic acid) (PMVE-b-PAA) is obtained. Chain extension of the AB diblock copolymers by ATRP gives rise to ABC triblock copolymers. The polymers have been characterized by MALDI-TOF, GPC and 1H NMR.  相似文献   

16.
Macromonomer initiators behave as macro cross‐linkers, macro initiators, and macromonomers to obtain branched and cross‐linked block/graft copolymers. A series of new macromonomer initiators for atom transfer radical polymerization (MIM‐ATRP) based on polyethylene glycol (Mn = 495D, 2203D, and 4203D) (PEG) were synthesized by the reaction of the hydroxyl end of mono‐methacryloyl polyethylene glycol with 2‐bromo propanoyl chloride, leading to methacryloyl polyethylene glycol 2‐bromo propanoyl ester. Poly (ethylene glycol) functionalized with methacrylate at one end was reacted with 2‐bromopropionyl chloride to form a macromonomeric initiator for ATRP. ATRP was found to be a more controllable polymerization method than conventional free radical polymerization in view of fewer cross‐linked polymers and highly branched polymers produced from macromonomer initiators as well. In another scenario, ATRP of N‐isopropylacrylamide (NIPAM) was initiated by MIM‐ATRP to obtain PEG‐b‐PNIPAM branched block/graft copolymers. Thermal analysis, FTIR, 1H NMR, TEM, and SEM techniques were used in the characterization of the products. They had a thermo‐responsive character and exhibited volume phase transition at ~ 36°C. A plasticizer effect of PEG in graft copolymers was also observed, indicating a lower glass transition temperature than that of pure PNIPAM. Homo and copolymerization kinetics were also evaluated. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
Photomediated controlled radical polymerization is a versatile method to prepare, under mild conditions, various well-defined polymers with complex architecture, such as block and graft copolymers, sequence-controlled polymers, or hybrid materials via surface-initiated polymerization. It also provides opportunity to manipulate the reaction through spatiotemporal control. This review presents a comprehensive account of the fundamentals and applications of various photomediated CRP techniques, including atom transfer radical polymerization (ATRP), reversible addition-fragmentation chain transfer (RAFT), nitroxide mediated polymerization (NMP) and other procedures. In addition, mechanistic aspects of other photomediated methods are discussed.  相似文献   

18.
In this paper, the combination of atom transfer radical polymerization (ATRP) of 1-ethoxyethyl acrylate (EEA) and the copper(I) catalyzed “click” 1,3-dipolar cycloaddition reaction of azides and terminal alkynes was evaluated as a method to synthesize diverse amphiphilic copolymer structures. Using the 1-ethoxyethyl protecting group strategy, the application field was broadened with the synthesis of complex polymer structures containing poly(acrylic acid) (PAA) segments. A modular approach has been used: polymers with alkyne functionalities as well as azide functionalities have been synthesized. These polymers were subsequently “clicked” together to yield block copolymers. Furthermore, graft copolymers were synthesized by grafting alkyne-containing polymers onto a polymer backbone with multiple azide functions using the combination of ATRP and “click” reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号