首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mob mutants in Escherichia coli are pleiotropically defective in all molybdoenzyme activities. They synthesise molybdopterin, the unique core of the molybdenum cofactor, but are unable to attach the GMP moiety to molybdopterin to form molybdopterin guanine dinucleotide, the functional molybdenum cofactor in Escherichia coli. A partially purified preparation termed protein FA (protein factor d'association), is able to restore molybdoenzyme activities to broken cell preparations of mob mutants. A fragment of DNA capable of complementing mob mutants has been isolated from an E. coli genomic library. Strains carrying this DNA in a multicopy plasmid, express 30-fold more protein FA activity than the wild-type bacterium. Protein FA has been purified to homogeneity by a combination of ion-exchange, affinity and gel-filtration chromatography. Protein FA consists of a single polypeptide of molecular mass 22 kDa and is monomeric in solution. N-terminal amino acid sequencing confirmed that protein FA is a product of the first gene at the mob locus. The purified protein FA was required in stoichiometric rather than catalytic amounts in the process that leads to the activation of the precursor of the molybdoenzyme nitrate reductase, which is consistent with the requirement of a further component in the activation.  相似文献   

2.
The narGHJI operon encodes the three subunits, alpha, beta, and gamma, of the respiratory nitrate reductase complex in Escherichia coli. A fourth open reading frame of the operon encodes a putative protein, NarJ, which is not present in purified nitrate reductase, but is required for biogenesis of the membrane-bound complex. NarJ was identified with a T7 expression system and was produced at significantly less than stoichiometric levels relative to the three enzyme subunits. A functional His-tagged NarJ fusion protein was overexpressed from a multicopy plasmid, purified by Ni2+ affinity chromatography, and characterized. Western blot analysis with antibodies raised against the fusion protein demonstrated that NarJ remained in the cytosol after assembly of the active membrane complex. The cytosolic alphabeta complex accumulated in a narJ insertion mutant was rapidly degraded after induction, but was stabilized by NarJ expressed from a multicopy plasmid. Overproduction of the His-tagged NarJ fusion protein in the same mutant led to the formation of an alphabeta.NarJ complex, which was resolved by Ni2+ affinity chromatography. The NarJ protein therefore has the properties of a system-specific (private) chaperone that reacts directly with and modifies the properties of the cytosolic alphabeta subunit complex, but remains in the cytoplasm after the assembly of the active alphabetagamma complex in the membrane.  相似文献   

3.
We have used inhibitors and site-directed mutants to investigate quinol binding to the cytochrome bnr (NarI) of Escherichia coli nitrate reductase (NarGHI). Both stigmatellin and 2-n-heptyl-4-hydroxyquinoline-N-oxide (HOQNO) inhibit menadiol:nitrate oxidoreductase activity with I50 values of 0.25 and 6 microM, respectively, and prevent the generation of a NarGHI-dependent proton electrochemical potential across the cytoplasmic membrane. These inhibitors have little effect on the rate of reduction of the two hemes of NarI (bL and bH), but have an inhibitory effect on the extent of nitrate-dependent heme reoxidation. No quinol-dependent heme bH reduction is detected in a mutant lacking heme bL (NarI-H66Y), whereas a slow but complete heme bL reduction is detected in a mutant lacking heme bH (NarI-H56R). This is consistent with physiological quinol binding and oxidation occurring at a site (QP) associated with heme bL which is located toward the periplasmic side of NarI. Optical and EPR spectroscopies performed in the presence of stigmatellin or HOQNO provide further evidence that these inhibitors bind at a heme bL-associated QP site. These results suggest a model for electron transfer through NarGHI that involves quinol binding and oxidation in the vicinity of heme bL and electron transfer through heme bH to the cytoplasmically localized membrane-extrinsic catalytic NarGH dimer.  相似文献   

4.
5.
Expression from the secA gene, encoding a key component of the general secretory pathway of Escherichia coli, is influenced by the secretion status of the cell, autogenous translational repression, and translational coupling to the upstream gene, X. SecA binds to its mRNA in a region overlapping its ribosome binding site, thus competing with ribosomes that would initiate secA translation. Mapping of the geneX-secA mRNA secondary structure has demonstrated that the RNA can adopt two distinct conformations in solution. The first conformation arises from the base-pairing of the secA Shine-Dalgarno (SD) sequence with the geneX terminus. The second conformation, in which the secA SD sequence is no longer paired with the geneX terminus, contains a GC-rich stem upstream of the secA SD sequence. The presence of this GC-rich stem is supported by structure mapping of a mutant RNA containing a deletion in the geneX terminus. The former structure appears to be involved in translational coupling by directly linking the geneX and secA sequences, where geneX translation activates secA translational initiation through the unpairing and unmasking of the secA SD sequence. As indicated by SecA-RNA binding assays, the latter structure is probably involved in SecA binding and translational repression of the secA gene. The stabilizing effect of magnesium ions toward occlusion of the secA SD sequence supports the presence of RNA tertiary structure in this regulatory domain.  相似文献   

6.
Thioredoxin reductase, lipoamide dehydrogenase, and glutathione reductase are members of the pyridine nucleotide-disulfide oxidoreductase family of dimeric flavoenzymes. The mechanisms and structures of lipoamide dehydrogenase and glutathione reductase are alike irrespective of the source (subunit M(r) approximately 55,000). Although the mechanism and structure of thioredoxin reductase from Escherichia coli are distinct (M(r) approximately 35,000), this enzyme must be placed in the same family because there are significant amino acid sequence similarities with the other two enzymes, the presence of a redox-active disulfide, and the substrate specificities. Thioredoxin reductase from higher eukaryotes on the other hand has a M(r) of approximately 55,000 [Luthman, M. & Holmgren, A. (1982) Biochemistry 21, 6628-6633; Gasdaska, P. Y., Gasdaska, J. R., Cochran, S. & Powis, G. (1995) FEBS Lett 373, 5-9; Gladyshev, V. N., Jeang, K. T. & Stadtman, T.C. (1996) Proc. Natl. Acad. Sci. USA 93, 6146-6151]. Thus, the evolution of this family is highly unusual. The mechanism of thioredoxin reductase from higher eukaryotes is not known. As reported here, thioredoxin reductase from human placenta reacts with only a single molecule of NADPH, which leads to a stable intermediate similar to that observed in titrations of lipoamide dehydrogenase or glutathione reductase. Titration of thioredoxin reductase from human placenta with dithionite takes place in two spectral phases: formation of a thiolate-flavin charge transfer complex followed by reduction of the flavin, just as with lipoamide dehydrogenase or glutathione reductase. The first phase requires more than one equivalent of dithionite. This suggests that the penultimate selenocysteine [Tamura, T. & Stadtman, T.C. (1996) Proc. Natl. Acad. Sci. USA 93, 1006-1011] is in redox communication with the active site disulfide/dithiol. Nitrosoureas of the carmustine type inhibit only the NADPH reduced form of human thioredoxin reductase. These compounds are widely used as cytostatic agents, so this enzyme should be studied as a target in cancer chemotherapy. In conclusion, three lines of evidence indicate that the mechanism of human thioredoxin reductase is like the mechanisms of lipoamide dehydrogenase and glutathione reductase and differs fundamentally from the mechanism of E. coli thioredoxin reductase.  相似文献   

7.
The assignment of the known ade genes to steps in purine biosynthesis in Schizosaccharomyces pombe has been completed with the demonstration that an ade3 mutants lacks FGAR amidotransferase, ade1A mutants lack GAR synthetase and ade1B mutants lack AIR synthetase. A comparison of enzyme activity with map position for ade1 mutants shows that (1) complementing ade1A mutants lack GAR synthetase but posses wild type amounts of AIR synthetase, (2) complementing ade1B mutants lack AIR synthetase but posses variable amounts of GAR synthetase, (3) non-complementing mutants lack both activities. In wild type strains the two activities fractionate together throughout a hundred-fold purification. Hence the ade1 gene appears to code for a bifunctional enzyme catalysing two distinct steps in purine biosynthesis. The two activities are catalysed by two different regions of the polypeptide chain which can be altered independently by mutation. Gel filtration studies on partially purified enzymes from wild type and various complementing mutant strains, indicate that the bifunctional enzyme is a multimer consisting of between four and six sub-units of 40,000 daltons each. GAR synthetase activity is associated with both the monomeric and multimeric forms but AIR synthetase is only associated with the multimer. A comparison of enzyme levels between diploids and their original complementing haploid strains suggests that complementation is due to hybrid enzyme formation.  相似文献   

8.
We show that epd (gapB) mutants lacking an erythrose 4-phosphate (E4P) dehydrogenase are impaired for growth on some media and contain less pyridoxal 5'-phosphate (PLP) and pyridoxamine 5'-phosphate (PMP) than their epd+ parent. In contrast to a previous report, we found that gapA epd double mutants lacking the glyceraldehyde 3-phosphate and E4P dehydrogenases are auxotrophic for pyridoxine. These results implicate the GapA and Epd dehydrogenases in de novo PLP and PMP coenzyme biosynthesis.  相似文献   

9.
The spoT gene of Escherichia coli encodes a guanosine 3',5'-bis(diphosphate) 3'-pyrophosphohydrolase (ppGppase) as well as an apparent guanosine 3',5'-bis(diphosphate) synthetase (designated PSII). To determine the regions of the SpoT protein that are required for these two competing activities, we analysed plasmid-borne deletion mutations for their ability to complement chromosomal mutations defective in each activity. We found that a region containing the first 203 amino acids of the 702-amino-acid SpoT protein was sufficient for ppGppase activity while an overlapping region containing residues 67-374 was sufficient for PSII activity. These data indicate that the catalytic sites involved in the two activities are separate but closely linked in the primary sequence of the SpoT protein. A ppGppase-defective delta 1-58 deletion mutant strain failed to synthesize ppGpp in response to nutrient limitation, also supporting the notion that PSII activity from wild-type SpoT does not increase in response to nutrient limitation. Using a strain lacking PSII activity but retaining ppGppase activity, we determined the contribution of the RelA protein (ppGpp synthetase I, PSI) to ppGpp synthesis following glucose starvation. We found that the RelA protein activity accounts for the initial burst of ppGpp synthesis at the onset of glucose starvation but that this source of synthesis is absent when amino acids are present during glucose starvation.  相似文献   

10.
11.
12.
We have compared the steady-state kinetics of wild-type nitrate reductase A and two mutant forms with altered beta subunits. To mimic conditions in vivo as closely as possible, we used analogues of the physiological quinols as electron donors and membranes with overexpressed nitrate reductase A in preference to a purified alpha beta gamma complex. With the wild-type enzyme both menadiol and duroquinol supply their electrons for the reduction of nitrate at rates that depend on the square of the quinol concentration, menadiol having the higher catalytic constant. The results as a whole are consistent with a substituted-enzyme mechanism for the reduction of nitrate by the quinols. Kinetic experiments suggest that duroquinol and menadiol deliver their electrons at different sites on nitrate reductase, with cross-inhibition. Menadiol inhibits the duroquinol reaction strongly, suggesting that menaquinol may be the preferred substrate in vivo. To examine whether electron transfer from menadiol and duroquinol for nitrate reduction requires the presence of all of the Fe-S centres, we have studied the steady-state kinetics of mutants with beta subunits that lack an Fe-S centre. The loss of the highest-potential Fe-S centre results in an enzyme without menadiol activity, but retaining duroquinol activity; the kinetic parameters are within a factor of two of those of the wild-type enzyme, indicating that this centre is not required for the duroquinol activity. The loss of a low-potential Fe-S centre affects the activity with both quinols: the enzyme is still active but the catalytic constants for both quinols are decreased by about 75%, indicating that this centre is important but not essential for the activity. The existence of a specific site of reaction on nitrate reductase for each quinol, together with the differences in the effects on the two quinols produced by the loss of the Fe-S centre of +80 mV, suggests that the pathways for transfer of electrons from duroquinol and menadiol are not identical.  相似文献   

13.
Fimbriae are long filamentous polymeric protein structures located at the surface of bacterial cells. They enable the bacteria to bind to specific receptor structures and thereby to colonise specific surfaces. Fimbriae consist of so-called major and minor subunits, which form, in a specific order, the fimbrial structure. In this review emphasis is put on the genetic organisation, regulation and especially on the biosynthesis of fimbriae of enterotoxigenic Escherichia coli strains, and more in particular on K88 and related fimbriae, with ample reference to well-studied P and type 1 fimbriae. The biosynthesis of these fimbriae requires two specific and unique proteins, a periplasmic chaperone and an outer membrane located molecular usher ('doorkeeper'). Molecular and structural aspects of the secretion of fimbrial subunits across the cytoplasmic membrane, the interaction of these subunits with periplasmic molecular chaperone, their translocation to the inner site of the outer membrane and their interaction with the usher protein, as well as the (ordered) translocation of the subunits across the outer membrane and their assembly into a growing fimbrial structure will be described. A model for K88 fimbriae is presented.  相似文献   

14.
Degradation of extracellular matrix takes place in areas of cell-matrix contacts and is partly carried out by the action of matrix metalloproteinases (MMP). MMP-2 is a member of the MMP family that has been associated with breast-cancer metastasis. In the present study, we investigated the association of MMP-2 to the surface of breast-cancer cells and revealed an MMP-2-binding site that is expressed on sparsely plated cells and which is progressively lost as the cells approach confluence. Gelatin zymography, immunostaining and flow cytometry of MDA-MB-231 cells from sparse cultures demonstrated binding both of latent and of activated exogenous MMP-2, while little or no binding of MMP-2 was observed in confluent culture. Analysis of the expression of MTI-MMP, TIMP-2 and alpha(v) integrin, 3 proteins shown to play a role in cell-surface association of MMP-2, revealed enhanced levels of these proteins in confluent MDA-MB-231 cells. Thus, the reduced MMP-2 binding to confluent cells is not related to a deficiency in these MMP-2-binding proteins. Taken together, these studies suggest that MMP-2 binding to the surface of breast-cancer cells is regulated by cell-cell interactions and that tumor cells invading from the main tumor mass can up-regulate their MMP-2-binding capacity to acquire greater invasive capacity.  相似文献   

15.
E. coli strains that contain the secY40 mutation are cold-sensitive, but protein export defects have not been observed even at the nonpermissive temperature. Here we describe experiments designed to explain the conditional phenotype associated with this allele. We found that combining the secY40 mutation with defects in the signal recognition particle targeting pathway led to synthetic lethality. Since the signal recognition particle is required for the insertion of inner membrane proteins (IMPs) into the cytoplasmic membrane but not for protein export, this observation prompted us to examine the effect of the secY40 mutation on IMP biogenesis. The membrane insertion of all IMPs that we tested was impaired at both permissive and nonpermissive temperatures in secY40 cells grown in either rich or minimal medium. The magnitude of the insertion defects was greatest in cells grown at low temperature in rich medium, conditions in which the growth defect was most pronounced. Consistent with previous reports, we could not detect protein export defects in secY40 cells grown in minimal medium. Upon growth in rich medium, only slight protein export defects were observed. Taken together, these results suggest that the impairment of IMP insertion causes the cold sensitivity of secY40 strains. Furthermore, these results provide the first evidence that the protein export and membrane protein insertion functions of the translocon are genetically separable.  相似文献   

16.
The isolated hemeprotein subunit of sulfite reductase (SiR-HP) from Escherichia coli consists of a high spin ferric isobacteriochlorin (siroheme) coupled to a diamagnetic [4Fe-4S]2+ cluster. When supplied with an artificial electron donor, such as methyl viologen cation radical, SiR-HP can catalyze the six electron reductions of sulfite to sulfide and nitrite to ammonia. Thus, the hemeprotein subunit appears to represent the minimal protein structure required for multielectron reductase activity. Proton magnetic resonance spectra are reported for the first time on unligated SiR-HP at 300 MHz in all three redox states. The NMR spectrum of high spin ferric siroheme at pH 6.0 was obtained for the purpose of comparing its spectrum with that of oxidized SiR-HP. On the basis of line widths, T1 measurements, and 1D NOE experiments, preliminary assignments have been made for the oxidized enzyme in solution. The pH profile of oxidized SiR-HP is unusual in that a single resonance shows a 9 ppm shift over a range of only 3 pH units with an apparent pK = 6.7 +/- 0.2. Resonances arising from the beta-CH2 protons of cluster cysteines have been assigned using deuterium substitution for all redox states. One beta-CH2 resonance has been tentatively assigned to the bridging cysteine on the basis of chemical shift, T1, line width, and the presence of NOEs to protons from the siroheme ring. The observed pattern of hyperfine shifts can be used as a probe to measure the degree of coupling between siroheme and cluster in solution. The cluster iron sites of the resting (oxidized) enzyme are found to possess both positive and negative spin density which is in good agreement with Mossbauer results on frozen enzyme. The NMR spectrum of the 1-electron reduced form of SiR-HP is consistent with an intermediate spin (S = 1) siroheme. Intermediate spin Fe(II) hemes have only been previously observed in 4-coordinate model compounds. However, the amount of electron density transferred to the cluster, as measured by the isotropic shift of beta-CH2 resonances, is comparable to that present in the fully oxidized enzyme despite diminution of the total amount of unpaired spin density available. Addition of a second electron to SiR-HP, besides generating a reduced S = 1/2 cluster with both upfield and downfield shifted cysteine resonances, converts siroheme to the high spin (S = 2) ferrous state.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Low levels of tetracyclines found as residues in milk inhibited the biosynthesis of beta-galactosidase in Escherichia coli. To produce the same effect, other antibacterials had to occur in concentrations that were more than 10-fold higher. This relative selectivity was exploited for the development of a screening test for tetracyclines in milk based on a chemiluminometric assay of beta-galactosidase. The method was validated with spiked samples of raw milk and applied to field samples contaminated with tetracyclines.  相似文献   

18.
l-Aspartate oxidase (EC 1.4.3.16) is a flavoprotein that catalyzes the first step in the de novobiosynthetic pathway to pyridine nucleotides both under aerobic and under anaerobic conditions. Despite the physiological importance of this biosynthesis particularly in facultative aerobic organisms, such as Escherichia coli, little is known about the electron acceptor of reduced L-aspartate oxidase in the absence of oxygen. In this report, evidence is presented which suggests that in vitro quinones can play such a role. L-Aspartate oxidase binds menadione and 2, 3-dimethoxy-5-methyl-p-benzoquinone with Kd values of 11.5 and 2.4 microM, respectively. A new L-aspartate:quinone oxidoreductase activity is described in the presence and in the absence of phospholipids, and its possible physiological relevance is discussed. Moreover, considering the striking sequence similarity between L-aspartate oxidase and the highly conserved family of succinate-fumarate oxidoreductases, the redox properties of L-aspartate oxidase were investigated in detail. A value of -216 mV was calculated for the midpoint potential of the couple FAD/FADH2 bound to the enzyme. This result perfectly explains why L-aspartate oxidase may be considered as a very particular fumarate reductase unable to use succinate as the electron donor.  相似文献   

19.
A 4589 bp DNA segment containing the Escherichia coli panBCD gene cluster was sequenced, and found to contain 6 complete open reading frames. panB, panC, and panD were identified by subcloning and insertional mutagenesis. The orientation of panD was also confirmed by orientation-specific expression of asparate-1-decarboxylase. panB and panC lie adjacent to one another, but are separated from panD by orf3, which is oriented in the opposite direction. Interruptions in the remaining open reading frames did not affect growth on glucose-minimal medium. No significant similarity to sequences in databases was found for orf1 and orf2. Orf3 contained extensive similarity to reading frames defined by E. coli yjiP, yjiQ, yhgA, and yafD. The function of these amino acid sequences is as yet undefined.  相似文献   

20.
The amy gene of Streptomyces griseus was not expressed in Escherichia coli cells due to the lack of recognition of the amy promoter by the E. coli RNA polymerase, as confirmed by using promoter-probe vectors. The expression of the amy gene in E. coli was detected only when the promoter-less gene was placed under the control of the lacZ promoter and was dependent on the level of IPTG added to the medium. The extracellular alpha-amylase detected in the culture broth seems to be released by cellular lysis. When the amy gene lacking both leader peptide and promoter was transcribed from the lacZ promoter, no alpha-amylase activity was detected but larger E. coli cells and inclusion bodies were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号