首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D.Q. Peng  X.D. Bai  F. Pan 《Vacuum》2006,81(4):507-516
In order to simulate the irradiation damage, argon ions were implanted into zircalloy-2 alloy with a fluence ranging from 1×1016 to 1×1017 ions/cm2, using an implanter at an extraction voltage of 190 kV, at liquid nitrogen temperature. Then the effect of argon ion implantation on the aqueous corrosion behavior of zircalloy-2 alloy was studied. The valence states of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS). Transmission electron microscopy (TEM) was used to examine the microstructure of the argon-implanted samples. Glancing angle X-ray diffraction (GAXRD) was employed to examine the phase transformation due to the argon ion implantation. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted zircalloy-2 alloy in a 1 M H2SO4 solution. It was found that the bubbles were formed on the surface of implanted samples; the bubbles grew larger with increasing argon fluence. The microstructure of argon-implanted samples changed from amorphous to partial amorphous, then to polycrystalline and finally to amorphous. The bubble forming and changing and microstructure changes affected the corrosion properties of implanted samples. Finally, the mechanism of the corrosion behavior of argon-implanted zircalloy-2 alloy is discussed.  相似文献   

2.
This paper is concerned with the surface modification of a cobalt alloy (Endocast) by sodium-ion implantation and with the effect of this modification on its corrosion resistance. The Na ions were implanted at doses of 1×1017 and 2×1017 ions/cm2 at energy of 25 keV. The chemical composition of the surface layers formed during the implantation was examined by secondary ion mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS), and their microstructure by transmission electron microscopy (TEM). The corrosion resistance was determined by electrochemical methods in a simulated body fluid (SBF) at a temperature of 37 °C. Prior to the measurements, the samples were exposed to the test conditions for 13 h to allow the corrosion potential Ecorr to stabilize, and for 181, 733 and 2200 h to investigate how the long-time exposures affect the corrosion resistance. The surfaces of the samples were examined by optical microscopy and by SEM-EDS. The TEM results indicate that the surface layers formed during the Na-implantation are amorphous. The results of the electrochemical examinations obtained for the Na-implanted Endocast samples indicate that the corrosion resistance of the alloy is reduced.  相似文献   

3.
X-ray diffraction diagrams of neutron irradiated Zircaloy-4 were obtained at the Brazilian Synchrotron Laboratory (LNLS) with the aim to obtain bulk information about the amorphization process in which the Zircaloy-4 second phase particles (SPPs) undergoes due to neutron irradiation. Owing to the low concentration of the SPPs in the alloy (∼ 0.4 V%), no data regarding to the bulk were obtained until now. The synchrotron experiences allowed to detect five of the more intense lines of the phase C14 (SPPs structure) in unirradited Zircaloy-4: <110>θ, <103>θ, <112>θ, <201>θ and <004>θ in the 34° < 2θ < 45° Bragg angle range and others of minor intensity. The diagrams of the samples irradiated at moderate doses (1020 n/cm2) show these lines even in the as received samples. In contrast, none of these lines are observed for high fluency samples (∼ 1022 neutrons/cm2), confirming in the bulk what is known by TEM in thin films. In addition, in similar high fluency samples annealed 24 h or 72 h at 600 °C the intensity rises just at the 2θ range where the C14 lines were observed, showing a wide peak. That peak is interpreted as a result of the superposition of unresolved diffraction lines corresponding to the Zircaloy SPPs which are in a reconstitution process of crystallization.  相似文献   

4.
In order to study the effects of zirconium and molybdenum ion bombardment on the aqueous corrosion behavior of zirconium, one group of specimens was implanted with zirconium ions with ions surface densities ranging from 1 × 1015 to 2 × 1017 ions/cm2 at about 170 °C, using a metal vapor vacuum arc (MEVVA) source operated at an extraction voltage of 50 kV. The other group of specimens was bombarded with molybdenum ion with ions surface densities ranging from 1 × 1016 to 5 × 1017 ions/cm2 at about 160 °C, using a MEVVA source operated at an extraction voltage of 40 kV. The valence states and depth distribution of elements in the surface of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), respectively. Polarization curves measurement was employed to evaluate the aqueous corrosion resistance of the zirconium samples in a 1N H2SO4 solution. It was found that the aqueous corrosion resistance of zirconium implanted with 5 × 1016 Zr ions/cm2 is the best in first group samples. For molybdenum ion implantation, the aqueous corrosion resistance of samples declined with raising ions surface densities. The natural corrosion potentials of zirconium samples bombarded with self-ions are more negative than that of the as-received zirconium. While, as for molybdenum ion implantation, the results are opposite. Finally, the mechanisms of the corrosion behavior of the zirconium samples implanted with zirconium and molybdenum ions are discussed.  相似文献   

5.
Y.Z. Liu  X.T. Zu  S.Y. Qiu  C.X. Li  C.F. Wei 《Vacuum》2006,81(1):71-76
In the present investigation, polished samples were implanted with nitrogen ion at an energy of 60 keV and implantation doses were 1×1016, 5×1016, 1×1017 and 6×1017 ions/cm2. Glancing incidence X-ray diffraction was employed on the implanted specimens to understand the phases formed with increasing dose. The valence states of nitrogen, titanium and carbon on the sample surfaces were analyzed by X-ray photoemission spectroscopy. The corrosion resistance was examined by the electrochemical methods in a solution with pH=10 at room temperature in order to determine the optimum dose that can give good corrosion resistance in a simulated nuclear reactor condition. Scanning electron microscopy was used to observe the topographies of nitrogen-implanted Ti-Al-Zr after potentiodynamic measurement. It was found that implanted nitrogen dissolved in titanium matrix with increasing dose and the resultant nitrides such as TiN and Ti2N precipitated. Implantation of nitrogen ions into the surface of Ti-Al-V alloy improves its corrosion resistance, and the increase of the corrosion resistance depends on the nitrogen dose employed; the maximum improvement of the corrosion resistance was observed at a dose of 1×1017 N+/cm2.  相似文献   

6.
Newly developed low-temperature nitride synthesis route was used to introduce interstitial nitrogen into the passive layer of as-received and as-polished 316L stainless steel. The new thermochemical route is based on treating the stainless steel samples in potassium nitrate melt in an ultra pure nitrogen atmosphere at 450 °C. Electrochemical impedance spectroscopy (EIS) and dc polarization measurements have been used to evaluate the nitride layer performance in 3.5% NaCl solution. Results showed a marked increase in the corrosion resistance of nitrided stainless steel even after maintaining two weeks in NaCl solution. The effect of the treatment temperature was also studied. Data showed that the as-polished samples nitrided at 450 °C have the highest corrosion resistance. The polarization resistance (Rp) for the as-polished and as-received blank stainless steel samples was estimated by EIS were approximately 4.0 × 104 Ω cm2 and 2.0 × 104 Ω cm2, respectively. The Rp increased by a factor of 2.5–5 for the nitrided samples. Increasing the nitriding temperature from 450 to 600 °C affects negatively the corrosion resistance of stainless steel in NaCl solution. The Rp of the samples nitrided at 600 °C decreased sharply being almost 1/30 of the Rp of the samples nitrided at 450 °C. Linear polarization measurements showed that the lowest corrosion rates and highest polarization resistances obtained from the as-polished nitrided samples at 450 °C. It has been found from the potentiodynamic measurements that the Ecorr of the as-polished nitrided samples at 450 °C is nobler than that measured from the other groups. The surface morphology was analysed by optical microscope and SEM-EDS under different nitriding conditions.  相似文献   

7.
D. Krupa  J. Baszkiewicz  A. Barcz  A. Biliński 《Vacuum》2007,81(10):1310-1313
The corrosion resistance and bioactivity of Ti6Al4V alloy after calcium-ion implantation were examined. Polished samples were implanted with a dose of 1017 Na+/cm2 at a beam energy of 25 keV. The chemical composition of the surface layer formed during the implantation was determined by XPS and SIMS. The bioactivity of the samples was evaluated by soaking them in a simulated body fluid (SBF) at 37 °C for 168 and 720 h. The corrosion resistance in SBF at 37 °C was determined by electrochemical methods after exposure in SBF for various times. The surfaces of the samples before and after examinations were observed by optical microscopy, SEM-EDS and AFM.The results of the corrosion examinations indicated that under stationary conditions and after short-term exposures, the calcium-ion implanted titanium alloy had an increased corrosion resistance, but during the anodic polarization, calcium-implanted samples underwent pitting corrosion. The microscopic observations show that the precipitations of calcium phosphates are present on the surface, but they do not form a continuous layer.  相似文献   

8.
The AISI 316L stainless steel has been widely used both in artificial knee and hip joints in bio-medical applications. In the present study AISI 316L SS was implanted with two different ions: nitrogen and helium at 100 keV with a dose of 1 × 1017 ions/cm2 at room temperature. The crystallographic orientation and surface morphology were studied using X-ray diffraction (XRD) and scanning electron microscope (SEM). The effects of ion implantation on the corrosion performance of AISI 316L stainless steel was evaluated in 0.9% NaCl solution using electro chemical test both on the virgin and implanted samples. The subsequent Tafel analysis shows that the ion implanted specimens were more corrosion resistant when compared to the bare specimens. Microhardness was also measured by Vickers method by varying the loads. The results of the studies indicated that there was a significant improvement in both corrosion resistance and hardness of implanted samples.  相似文献   

9.
The present study compares structural and optical modifications of bare and silica (SiO2) coated ZnS quantum dots under swift heavy ion (SHI) irradiation. Bare and silica coated ZnS quantum dots were prepared following an inexpensive chemical route using polyvinyl alcohol (PVA) as the dielectric host matrix. X-ray diffraction (XRD) and transmission electron microscopy (TEM) study of the samples show the formation of almost spherical ZnS quantum dots. The UV-Vis absorption spectra reveal blue shift relative to bulk material in absorption energy while photoluminescence (PL) spectra suggests that surface state and near band edge emissions are dominating in case of bare and coated samples, respectively. Swift heavy ion irradiation of the samples was carried out with 160 MeV Ni12+ ion beam with fluences 1012 to 1013 ions/cm2. Size enhancement of bare quantum dots after irradiation has been indicated in XRD and TEM analysis of the samples which has also been supported by optical absorption spectra. However similar investigations on irradiated coated quantum dots revealed little change in quantum dot size and emission. The present study thus shows that the coated ZnS quantum dots are stable upon SHI irradiation compared to the bare one.  相似文献   

10.
The aim of this study was to examine the influence of carbon content on the microstructures and corrosion characteristics. The results showed that the hypereutectic microstructure comprised primary (Cr,Fe)7C3 carbides and the eutectic colonies [γ-Fe + (Cr,Fe)7C3]. The amounts of primary (Cr,Fe)7C3 carbides increased from 33.81 to 86.14% when carbon content increased from 3.73 to 4.85 wt%. The corrosion resistance of the hypereutectic alloy with 4.85 wt% C was about 20 times higher than that with 3.73 wt% C. The galvanic corrosion occurred in all claddings due to difference of corrosion potential between primary carbide and austenite. The dense distribution of primary carbides could retard the austenitic matrix from selective corrosion. The austenite dissolved the Fe2+ ions and formed a Cr2O3 film under 3.5% NaCl aqueous solution.  相似文献   

11.
Studies on the corrosion behavior of yttrium-implanted zircaloy-4   总被引:2,自引:0,他引:2  
In order to study the effects of yttrium ion implantation on the aqueous corrosion behavior of zircaloy-4, specimens were implanted with yttrium ions using a MEVVA source at an energy of 40 keV, with a dose range from 1 × 1016 to 1 × 1017 ions/cm2 at about 150°C. Transmission electron microscopy (TEM) was used to obtain the structural character of the yttrium-implanted zircaloy-4. The valence of the yttrium ions in the surface layer was analyzed by X-ray photoemission spectroscopy (XPS). Three-sweep potentiodynamic polarization measurement was employed to evaluate the aqueous corrosion behavior of zircaloy-4 in a 1 N H2SO4 solution. It was found that a significant improvement was achieved in the aqueous corrosion resistance of zircaloy-4 compared with that of the as-received zircaloy-4. The mechanism of the corrosion resistance improvement of the yttrium-implanted zircaloy-4 is probably due to the addition of the yttrium oxide dispersoid into the zirconium matrix.  相似文献   

12.
The effect of silicon ion implantation upon the corrosion resistance and structure of the surface layers formed during the implantation in the Ti6A14V titanium alloy was examined. The silicon doses were 0.5, 1.5, 3.0 and 4.5 × 1017Si+/cm2, and the ion beam energy was 100 keV. The corrosion resistance of the samples exposed to a 0.9% NaCl solution at a temperature of 37 °C was measured using electrochemical methods. The structure of the surface layers formed during the implantation was examined by a transmission electron microscope (TEM). The results of the corrosion resistance examinations have shown that the unimplanted and 0.5 × 1017Si+/cm2 implanted samples undergo uniform corrosion. At higher silicon doses, the samples show pitting corrosion. The highest corrosion resistance was shown by the alloy implanted with 0.5 × 1017Si+/cm2. It has been found that, after a long-term (1200 h) exposure to a 0.9% NaCl solution, the corrosion resistance of the samples is greater than that observed after a short-term exposure. TEM examinations have shown that, beginning from a dose of 1.5 × 1017Si+/cm2, the surface of the Ti6A14V alloy samples becomes amorphous. Heating of the 1.5 × 1017Si+/cm2 implanted samples at 200 and 500 °C does not change their structure, whereas after heating at 650 °C, the amorphous phase vanishes.  相似文献   

13.
Organosilicon film and SiOx-like film are deposited on titanium alloy (Ti6Al4V) surfaces by atmospheric pressure (~ 105 Pa) dielectric barrier discharge to improve its corrosion resistance in Hanks solution. Hexamethyldisiloxane (HMDSO) is used to be the chemical precursor. The organosilicon film deposited in Ar/HMDSO system has high growth rate (75 nm/min) and low surface roughness (3 nm), while the SiOx-like film deposited in Ar/O2/HMDSO system has lower growth rate (35 nm/min) and slightly higher surface roughness (9 nm). The potentiodynamic polarization tests show that both the two siloxane films coated Ti6Al4V samples have more positive corrosion potential and one order of magnitude lower corrosion current density than the substrate, indicating the corrosion resistance of Ti6Al4V can be improved by depositing siloxane film on its surface. In particular, as the surface is more compact and cross-linked, the SiOx-like film has better corrosion resistance than the organosilicon film.  相似文献   

14.
In order to study the influence of cerium ion implantation on the aqueous corrosion behavior of zircaloy-4, specimens were implanted by cerium ions with a fluence range from 1×1016 to 1×1017 ions/cm2 at maximum 150°C, using MEVVA source at an extracted voltage of 40 kV. The valence and elements penetration distribution of the surface layer were analyzed by X-ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES) respectively. Glancing angle X-ray diffraction (GAXRD) was employed to examine the phase transformation due to the cerium ion implantation in the oxide films. Three-sweep potentiodynamic polarization measurement was employed to value the aqueous corrosion resistance of zircaloy-4 in a 1 N H2SO4 solution. It was found that a significant improvement in the aqueous corrosion behavior of zircaloy-4 implanted with cerium ions compared with that of the as-received zircaloy-4. The improvement effect will declined with raising the implantation fluence. The bigger is the fluence, the less is the improvement. Finally, the mechanism of the corrosion behavior of the cerium-implanted zircaloy-4 is discussed.  相似文献   

15.
In order to study the effect of krypton ion irradiation on the aqueous corrosion behavior of laser beam welded zircaloy-4 (LBWZr4), the butt weld joint of zircaloy-4 was made by means of a carbon dioxide laser, subsequently the LBWZr4 samples were irradiated with Kr ions using an accelerator at an energy of 300 keV, with a dose range from 1 × 1015 to 3 × 1016 ions/cm2 at about 150 °C. Three-sweep potentiodynamic polarization measurement was employed to evaluate the aqueous corrosion behavior of Kr-irradiated LBWZr4 in a 0.5 M H2SO4 solution. Scanning electron microscopy (SEM) was used to examine the surface topography of the Kr-irradiated LBWZr4 after the potentiodynamic polarization measurement. Transmission electron microscopy was employed to examine the change of microstructures in the irradiated surface. The polarization tests showed that compared with the passive current density of the as-received LBWZr4, the Kr-irradiated LBWZr4 is much lower; however, with the irradiation dose increasing from 1 × 1015 to 3 × 1016 ions/cm2, the passive current density, closely related to the surface corrosion resistance, increased remarkably. The mechanism of the corrosion behavior transformation was due to the recrystallization of the amorphous phase induced by the lower ion irradiation.  相似文献   

16.
Silicon oxynitride (SixOyNz) buried insulating layers were synthesized by implantation of nitrogen (14N+) and oxygen (16O+) ions sequentially in the ratio 1:1 at 150 keV to ion-fluences ranging from 1 × 1017 to 5 × 1017 cm−2 to prepare silicon on insulator (SOI) structures. The as implanted samples were held at 270 °C and irradiated to total fluence of 1 × 1014 cm−2 by 60 MeV Ni+5 to study the structural changes/recrystallization of SOI structures induced by swift heavy ion (SHI) irradiation. Fourier transform infrared (FTIR) measurements on the as implanted samples (≤1 × 1018 cm−2) show a single absorption band in the wavenumber range 1300-750 cm−1 attributed to the formation of silicon oxynitride (Si-O-N) bonds in the implanted silicon. It is observed that a nitrogen rich silicon oxynitride structure is formed after SHI irradiation. The study of X-ray rocking curves on the samples show the formation of small silicon crystallites due to swift heavy ion irradiation.  相似文献   

17.
In this work we prepared icosahedral gold particles and gold nanoplates using potassium tetrachloroaurate as precursor and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers as both reductant and capping agent under microwave irradiation. The products were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The size and shape of the resultant nanoparticles could be tuned by changing the chloride ion dosage and reaction temperature. With lower dosage of chloride ion, a lower proportion of irregular shaped nanoparticles and smaller gold decahedra and icosahedra were observed. Increasing the molecular ratio of [AuCl4]/[Cl] and reaction temperature could increase the proportion of gold nanoplates in the final product. Typically when the reaction proceeded at 120 °C with [AuCl4]/[Cl] = 10, > 90% of the product was nanoplatelets.  相似文献   

18.
19.
Electron energy loss spectroscopy has been employed for investigation of the effect of 600 eV Ar+-ion irradiation in the dose range 7×1016-4×1017 ions/cm2 on the atomic structure and surface composition of alloy Pt80Co20(1 1 1). A method of the layer-by-layer reconstruction of the lattice interplanar distance changes based on the analysis of the plasmon spectra excitation was proposed. The ion bombardment was shown to result in a non-monotonic variation of the lattice interplanar distance due to formation of the stable defects, with the topmost layer being in the state of compression. Using the ionization energy loss spectra, a layer-by-layer concentration profile of the alloy components was reconstructed for different doses of ion irradiation of the surface. The Ar+-ion bombardment of the alloy was found to result in the preferential sputtering of Co and in the enrichment of the near-surface region by Pt atoms with formation of an altered layer, which is characterized by a non-monotonic concentration profile dependent on the irradiation dose. The results obtained are discussed in the framework of the models of preferential sputtering and radiation-induced segregation.  相似文献   

20.
Uniform Fe3O4 nanoparticles with diameters of 3-5 nm are successfully decorated onto the external walls of multiwall carbon nanotubes (MWCNTs) by in situ high-temperature decomposition of Fe(acac)3 in polyol solution under the irradiation of microwave. With this method, reaction time of forming Fe3O4-MWCNTs nanocomposites has been significantly shortened to 15 min. The resulting Fe3O4-MWCNTs nanocomposites show superparamagnetic property at room temperature and can be remained as stable aqueous dispersion for 2 months. Longitudinal relaxivity (r1) and transverse relaxivity (r2) of the magnetic MWCNTs are 8.34 Fe mM−1 S−1 and 146 Fe mM−1 S−1 respectively. The much higher r2 value and the obvious change in the gray scale of MR images confer the Fe3O4-MWCNTs nanocomposites as potential candidates for T2-weighted MRI contrast agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号