首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During sheet-metal forming processes, the friction conditions have a decisive influence on forming limits, the robustness of the production process, and the quality of the parts produced, with significant forces required to overcome friction between the sheet and the tools. If batch-to-batch reproducibility is to be guaranteed, an appropriate method of characterising the sheet surface topography is needed to monitor the sheetmetal fabrication process. Newly developed optical measurement techniques and computer workstation technology are presented, which enable the topography of sheet surfaces to be described in three dimensions. New parameters for describing sheet surface topography are developed. This may correlate more closely with frictional behaviour in sheet stamping than the previously used two-dimensional parameters, with the size, shape, and distribution of the peaks and valleys of the topography defined. Results generated on a special drawing friction test machine indicate that numerous narrow peaks and large, separate, uniformly distributed valleys yield a desirable resistance to adhesion.  相似文献   

2.
The frictional properties of a thin hexadecane film confined between two atomically smooth surfaces of mica were studied using the surface forces apparatus equipped with a 3D actuator–sensor attachment specially designed to investigate static and dynamic forces in three orthogonal directions simultaneously. The use of this attachment allows the relative alignment of the reciprocal sliding motion to be changed by an angle of 90° while maintaining the film under the same confinement conditions. The effects of the commensurability of the confining mica surfaces as well as the relative sliding direction on the frictional behavior of the hexadecane film were determined for different temperatures (18–29 °C) and sliding velocities (4 nm/s to 4 μm/s). The confined hexadecane film exhibited smooth sliding friction whose amplitude increased with the commensuration of the surfaces. A progressive evolution in the kinetic friction force toward a steady-state value was observed over reciprocal sliding motion for given experimental conditions of applied load, sliding velocity and environmental temperature. This friction evolution shows to be dependent on the sliding history of the film and could result from a partial molecular ordering, occurring during shear.  相似文献   

3.
This study pertains to the observations made during the sliding wear response of a zinc-based alloy in different test conditions. The effects of sliding speed and load on the wear behaviour of the alloy have been studied. The properties evaluated were wear rate, frictional heating and coefficient of friction. The wear performance of the zinc-based alloy has been compared with that of a conventional cast iron in identical test conditions. The wear rate of the samples increased with applied load and sliding speed while the seizure resistance (load) deteriorated with speed. The zinc-based alloy exhibited less wear rate and reduced frictional heating than that of the cast iron while friction coefficient followed a reverse trend. Observed wear response of the samples has been discussed in terms of specific features like lubricating, load carrying, microcracking and thermal stability of various microconstituents of the samples, and substantiated further through the features of wear surfaces, subsurface regions and debris.  相似文献   

4.
本文论述了摩擦对板料成形的特点和重要性,应用数值模拟技术研究摩擦对板料拉深成形的影响。结果表明:模拟某复杂零件成形性能与摩擦系数关系密切;当摩擦系数为μ3时,冲压方向最大应力最小。研究结果表明采用数值模拟技术便于研究摩擦与板料冲压成形之间的相互关系。  相似文献   

5.
Transfer and accumulation of adhered sheet material, generally referred to as galling, is the major cause for tool failure in sheet metal forming. In this study, the galling resistances of several tool steels were evaluated against dual-phase high-strength carbon steel using a SOFS tribometer, in which disc-shaped tools were slid against a real sheet surface in dry sliding test conditions. Three different frictional regimes were identified and characterized during sliding, and any transition in friction corresponded to a transition in wear mechanisms of the sheets. The performance of the tools depended on load, material and the particular frictional regime. Best overall performance was obtained by nitrogen-alloyed powder metallurgy tool steel.  相似文献   

6.
The characterization of friction coefficients at the tool-chip-workpiece interface remains an issue. This paper aims to identify a friction model able to describe the friction coefficient at this interface during the dry cutting of an AISI1045 with TiN coated carbide tools. A new tribometer has been designed in order to reach relevant values of pressures and sliding velocities. This set-up is based on a modified pin-on-ring system. Additionally a numerical model simulating the frictional test has been associated in order to quantify average friction coefficients around the spherical pin, from the standard macroscopic data provided by the experimental system. A range of cutting speeds has been investigated. It has been shown that the friction coefficient is very much dependant on the sliding velocity. A new friction model has been identified based on the average local sliding velocity.  相似文献   

7.
This investigation pertains to the influence of some test parameters like applied load, sliding speed and test environment on the sliding wear behaviour of a grey cast iron. Properties studied were wear rate, frictional heating and friction coefficient in dry and oil lubricated conditions. The wear response of the samples has been discussed in terms of specific characteristics like load bearing, lubricating and cracking tendency of different microconstituents of the cast iron. Examination of wear surfaces, subsurface regions and debris particles has also been carried out to understand the operating wear mechanisms and further substantiate the observed response of the samples.  相似文献   

8.
研究了摩擦表面流动的空气对摩擦力的影响。通过制动模拟试验,对4种不同表面形状衬片的制动力矩-时间曲线的波动幅度进行了比较分析,根据摩擦表面中流动空气的不同工作特性,建立了相应的简图进行了详细的说明:试验结果表明:在摩擦热的作用下,表面空气的温度升高,气压增加,从而削弱了工作载荷对表面的作用力,使摩擦力矩产生波动。随着制动速度的下降,热空气对摩擦力矩波动的影响减小。制动时,摩擦盘带入表面的空气越多,空气对摩擦力矩的影响就越大;摩擦表面存留的热空气越多,热空气对摩擦力矩的影响就越大。  相似文献   

9.
The employment of surface texturing for improved tribological contacts has spread over the years. The possibilities of designing and manufacturing textured surfaces with predetermined geometries have multiplied as well as the need of performing experimental laboratory tests before applying the surfaces in an industrial context. In this paper, a number of experimental tests were performed using a novel test rig, called axial sliding test, simulating the contact of surfaces under pure sliding conditions. The aim of the experiments is to evaluate the frictional behavior of a new typology of textured surfaces, the so-called multifunctional surfaces, characterized by a plateau area able to bear loads and a deterministic pattern of lubricant pockets. Six surface typologies, namely three multifunctional and three machined using classical processes, were chosen to slide against a mirror-polished counterpart. A number of experiments were carried out at different normal pressures employing for all specimens the same reciprocating movement and the same lubrication. The measured friction forces were plotted against the incremental normal pressure, and the friction coefficients were calculated. The results comparison showed clearly how employing multifunctional surfaces can reduce friction forces up to 50 % at high normal loads compared to regularly ground or turned surfaces. Friction coefficients approximately equal to 0.12 were found for classically machined surfaces, whereas the values were 0.06 for multifunctional ones. All the specimens were characterized before and after testing. Wear occurrence was not detected on the tested surfaces except for the mirror-polished one which underwent all the experiments.  相似文献   

10.
The results of comparative tribotests of DU materials and developed netted sheet antifriction polytetrafluoroethylene-based materials during dry friction against a steel counterbody are discussed. It is shown that the netted sheet antifriction material is capable of long operation under the aforementioned conditions at up to 3 mps sliding velocities. IR spectroscopy and thermogravimetry of wear debris show a great amount of low-melting polytetrafluoroethylene destruction products that cause a decrease in friction temperature after the specimen run-in. The sheet material having a low wear rate, designed for operation in dry friction at high sliding velocities, can only be produced with a large volumetric share of polytetrafluoroethylene, which is the main condition for the formation of the antifriction layer. The Sharpy rule for sheet material friction at low wear rate is observed when the share of solid inclusions on the friction surface, the bronze frame in our case, is an order of magnitude lower that that of the softer and pliant matrix.  相似文献   

11.
纹理表面滑动摩擦稳态摩擦学性能   总被引:1,自引:0,他引:1       下载免费PDF全文
基于稳态滑动摩擦系统模型,采用球-盘摩擦副定量分析研究法向载荷、滑动速度、初始表面纹理和摩擦副材料对稳态摩擦因数的影响,得到稳态摩擦因数在不同工况下的变化规律。结果表明:滑动摩擦的稳态摩擦因数与磨损率正相关,周向纹理表面的稳态摩擦因数最大,无纹理表面的稳态摩擦因数次之,径向纹理表面的稳态摩擦因数最小;无论何种初始表面形貌,随着转速的增加,稳态摩擦因数先减小后增大,随着法向载荷的增大,稳态摩擦因数呈增长趋势;较深较宽的表面纹理具有更大的稳态摩擦因数和更大的瞬时波动;稳态摩擦因数也与摩擦副材料的选取有关。  相似文献   

12.
The friction behaviour of gear teeth in the context of tribology can have a strong effect on housing vibration, noise and efficiency. One of the parameters that greatly influences the friction under certain running conditions is surface roughness. In this work, rough friction was studied in lubricated sliding of roller surfaces, which were manufactured to simulate the real gear surfaces. By examining 3D surface topography of two mating bodies, both surface roughness and its effect on friction behaviour can be studied. In a previous study, a rough-friction test rig has been designed, constructed and initially verified. The types of surfaces involved in this study are ground, shot-peened, phosphated and electrochemically deburred. These rollers were subjected to the same friction testing procedures. Roller surfaces were then examined, and correlation between the topography and the frictional behaviour was analysed. Friction behaviour was interpreted in terms of Stribeck curves (friction coefficient as the function of Hersey parameter (ην/p)). The results showed that electrochemically deburred and certain phosphated surfaces provide lower friction coefficient values which are competitive to fine-ground surfaces in lubricated rolling/sliding contact.  相似文献   

13.
The sliding frictional behaviour of oxide films formed on low alloy steel by the combined plasma nitrocarburising and post oxidation treatment has been investigated. Unlubricated sliding tests of the as-nitrocarburised and nitrocarburised-oxidised specimens showed that the frictional behaviour depends not only on the oxidation treatment conditions, but also on the counterface material and the testing conditions. When sliding against a steel counterface, all the tested specimens exhibited similar frictional behaviour, which is dominated by the material transfer from the counterface to the sliding surface. On the other hand, when sliding against an alumina slider, all the oxidised specimens exhibited a low friction regime. The duration of this low friction regime depends on the treatment and test conditions, with the low temperature oxidised/nitrocarburised specimen being the most durable. The mechanisms associated with the observed frictional characteristics are discussed in terms of material transfer and the structure and mechanical integrity of the films.  相似文献   

14.
Experimental wear and friction studies were conducted with a series of mechanical carbons sliding against metal surfaces in liquid oxygen (-298 F) at sliding velocities to 6500 feet per minute and a load of 1000 gm. The data reported shows that dense highly graphitic carbons have potential use as seal and bearing materials for liquid oxygen applications.

High density graphitic carbons with a greater oxidation resistance and a greater capability of forming a transfer film gave the lowest wear and friction. Metals that form the most stable oxide films promote greater adherence of the graphite to the mating surface. Impregnated carbons must be selected with caution because frictional heating generated during sliding can initiate hazardous reactions between oxygen and certain unstable organic compounds.  相似文献   

15.
By means of a tensile strip testing system, the nature of interfacial friction in stamping operations were investigated for three different coated sheet steels. Friction coefficient measurements were taken at seventeen distinct operating conditions by varying the sheet strip coating material (lead and zinc), applied lubricant (oil-base lubricants and greases) and pin radii (10 and 20 mm). In addition to determining the friction coefficient, the surface roughnesses of the sheet strips were measured before and after the completion of each test. From the experimental results, several relationships were ascertained for the role of the microscopic wear in determining the character of interfacial friction during stamping processes.  相似文献   

16.
This work deals with the development of a new tribometer designed for the characterisation of the frictional properties at the tool/chip/workpiece interfaces in cutting processes. Based on a plane–sphere contact configuration, the experimental set‐up enables a continuous regeneration of the pin–workmaterial contact. The average contact pressure can be selected up to 3 GPa under sliding velocities reaching 16 m/s. Under such severe conditions, which are not reachable with conventional tribometers, the apparent friction coefficient is quantified in parallel to the heat flux transmitted to the pin. This new system has been applied to the characterisation of the frictional properties during the dry machining of a 27MnCr5 annealed steel with a carbide cutting tool. The influence of the sliding velocity and of an additional TiN layer deposited by PVD on the carbide pins has been investigated in dry conditions. It has been shown that the sliding velocity is the more influential parameter, followed by the coating. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The friction in stamping is an important process parameter to control the flow of material in the tool. Consequently, it is also an important parameter in the design process of new stamping tools when numerical simulations of the forming operations are performed. In this work an advanced friction model is evaluated, which considers properties of surface topography, lubricant, sheet material, and process parameters such as sliding speed and pressure. The evaluation is made by comparing theoretical results with experimental ones obtained in a bending-under-tension friction test. The results show conformance in behaviour between the friction model and the experimental work. Furthermore, a model, which considers the influence of bulk plastic strains on the real area of contact, is investigated. The developed model predicts that the effective hardness of a surface is reduced by the presence of underlying plastic flow. It is found that when the strain rates are increased, the Stribeck curve becomes flatter and mixed lubrication is introduced at lower Hersey values. The friction model clearly shows the potential of improving the FE simulations of sheet metal forming operations, in comparison to the use of the classical Coulomb's friction model.  相似文献   

18.
The sliding interfaces found in the body—within the eyes, the digestive system, and the articulating joints, for example—are soft and permeable yet extremely robust, possessing low friction. The common elements among these systems are hydrophilic biopolymer networks that provide physical surfaces, elasticity, and fluid permeability. Stiff, impermeable probes are traditionally used to assess the frictional properties of most surfaces, including soft, permeable materials. However, both sides of physiological articulating interfaces are soft and hydrated. Measuring the friction response on just one-half of the cornea–eyelid interface or the cartilage–cartilage interface using a stiff, impermeable probe may not reproduce physiological lubrication. Here, we present lubricity measurements of the interface between two soft, hydrated, and permeable hydrogels. We explore the distinctions between the self-mated “Gemini” hydrogel interface and hydrogels sliding against hard impermeable countersurfaces. A rigid impermeable probe sliding against a soft permeable hydrogel exhibits strong frictional dependence on sliding speed, and a hydrogel probe sliding against flat glass shows a strong friction dependence on time in contact. The twin Gemini interface shows very low friction μ < 0.06, with little dependence on sliding speed or time in contact. This consistently low-friction Gemini interface emulates the physiological condition of two like permeable surfaces in contact, providing excellent lubricity.  相似文献   

19.
In this study we investigated the sliding velocity dependency of the coefficient of friction for a Si-containing diamond-like carbon (DLC-Si) film in an automatic transmission fluid (ATF) under a wide range of contact pressures. The DLC-Si film and a nitrided steel with a surface roughness, RzJIS, of around 3.0 μm were used as disk specimens. A high-carbon chromium steel (JIS-SUJ2) bearing ball was used as a ball specimen. Friction tests were conducted using a ball-on-disk friction apparatus under a wide range of sliding velocites (0.1-2.0 m/s) and contact pressures (Pmax: 0.42-3.61 GPa) in ATF. The friction coefficients for the nitrided steel had a tendency to decrease with an increase in sliding veloicity under all the contact pressure conditions; however, the friction coefficients for the DLC-Si film were stable with respect to sliding velocities under all the contatct pressures. These results indicate that the DLC-Si film suppresses the stick-slip motion during sliding againt steel in ATF, which is a desired frictional characteristic for the electromagnetic clutch disks used under lubrication. Furthermore, the DLC-Si film showed a higher wear resistance and lower aggression on the steel ball specimen than the nitrided steel. There were less hydrodynamic effects on the friction coefficient for the DLC-Si film possibly due to maintenance of the initial surface roughness and its poorer wettability with the fluid. X-ray photoelectron spectroscopy (XPS) analysis of the sliding surfaces revealed that the adsorption film derived from the succinimide on the sliding surfaces of the DLC-Si film and the mating steel ball also contributed to the sufficient and less sliding-velocity-dependant friction coefficients.  相似文献   

20.
Peter J. Blau  E.P. Whitenton 《Wear》1984,94(2):201-210
The effects of test sample fixturing on the interpretation of frictional break-in behavior are described for dry sliding flat-on-ring tests of CDA 688 bronze on 52100 steel. It is demonstrated that for otherwise similar test conditions (i.e. 10 N load, 20 cm s?1 velocity, 1 μm polished block surfaces and flowing argon gas environment) tilt of the fixed flat block can affect the break-in duration for friction and for wear because of the rate at which a balance of steady state sliding surface contact conditions is achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号