首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have fabricated a poly(aniline-3-methyl thiophene) organic thin material on p-Si substrate by placing a solution of copolymer in acetonitrile on top of a p-Si substrate and then evaporating the solvent. The electrical and interface state density properties of the poly(aniline-3-methyl thiophene) copolymer/p-Si/Al diode have been investigated through methods using current-voltage (I-V), Cheung's, and a modified Norde's function. Good agreement was observed with the values of barrier height as obtained from all of these methods. The diode shows a non-ideal I-V behavior with an ideality factor greater than unity, which could be ascribed to the interfacial layer, interface states and series resistance. The interface state density of diode was determined using the forward-bias I-V characteristic technique at room temperature, and it decreases exponentially with bias from 1.39 × 1016 cm2 eV1 in (0.06 − Ev) eV to 4.86 × 1015 cm2 eV1 in (0.51 − Ev) eV.  相似文献   

2.
An Al/Methyl Red/p-Si sandwich Schottky barrier diode (SBD) has been fabricated by adding a solution of the organic compound Methyl Red in chloroform onto a p-Si substrate, and then evaporating the solvent. Current-voltage (I-V) measurements of the Al/Methyl Red/p-Si sandwich SBD have been carried out at room temperature and in the dark. The Al/Methyl Red/p-Si sandwich SBD demonstrated rectifying behavior. Barrier height (BH) and ideality factor values of 0.855 eV and 1.19, respectively, for this device have been determined from the forward-bias I-V characteristics. The Al/Methyl Red/p-Si sandwich SBD showed non-ideal I-V behavior with the value of ideality factor greater than unity. The energy distribution of the interface state density determined from I-V characteristics increases exponentially with bias from 3.68 × 1012 cm− 2 eV− 1 at (0.81 − Ev) eV to 9.99 × 1013 cm− 2 eV− 1 at (0.69 − Ev) eV.  相似文献   

3.
The Schottky barrier height (SBH) values have been obtained from the reverse bias capacitance-voltage (C-V) characteristics of Au-Sb/p-GaSe:Gd Schottky barrier diode (SBD) in the temperature range of 180-320 K. The forward bias capacitance-frequency (C-f) and conductance-frequency (G-f) measurements of Au-Sb/p-GaSe:Gd SBD have been carried out from 0 to 1.00 V with steps of 0.05 V, whereby the energy distribution of the interface states and their relaxation time have been determined from these characteristics. It has been seen that there is a good agreement between the experimental and theoretical C-f and G-f values. Also, the capacitance values obtained from C-f measurements have shown almost a plateau up to a certain value of frequency, then, have decreased. It has been seen that the interface state density has a very small density distribution range (6.02 × 1010-6.80 × 1010 cm−2 eV−1) in the energy range of (0.21−Ev)-(1.21−Ev) eV with bias from the midgap towards the top of the valence band. The interface state density values calculated for Au-Sb/p-GaSe:Gd SBD are rather low than those given in the literature.  相似文献   

4.
The electrical and photovoltaic properties of the Au/n-GaAs Schottky barrier diode have been investigated. From the current-voltage characteristics, the electrical parameters such as, ideality factor and barrier height of the Au/n-GaAs diode were obtained to be 1.95 and 0.86 eV, respectively. The interface state distribution profile of the diode as a function of the bias voltage was extracted from the capacitance-voltage measurements. The interface state density Dit of the diode was found to vary from 3.0 × 1011 eV−1 cm−2 at 0 V to 4.26 × 1010 eV−1cm−2 at 0.5 V. The diode shows a non-ideal current-voltage behavior with the ideality factor higher than unity due to the interfacial insulator layer and interface states. The diode under light illumination exhibits a good photovoltaic behavior. This behavior was explained in terms of minority carrier injection phenomenon. The photovoltaic parameters, such as open circuit voltage and short circuit current density were obtained to be 362 mV and Jsc = 28.3 μA/cm2 under AM1, respectively.  相似文献   

5.
?. Alt?ndal  A. Tataro?lu 《Vacuum》2009,84(3):363-368
In order to good interpret the experimentally observed Au/n-Si (metal-semiconductor) Schottky diodes with thin insulator layer (18 Å) parameters such as the zero-bias barrier height (Φbo), ideality factor (n), series resistance (Rs) and surface states have been investigated using current-voltage (I-V), capacitance-frequency (C-f) and conductance-frequency (G-f) techniques. The forward and reverse bias I-V characteristics of Au/n-Si (MS) Schottky diode were measured at room temperature. In addition, C-f and G-f characteristics were measured in the frequency range of 1 kHz-1 MHz. The higher values of C and G at low frequencies were attributed to the insulator layer and surface states. Under intermediate forward bias, the semi-logarithmic Ln (I)-V plot shows a good linear region. From this region, the slope and the intercept of this plot on the current axis allow to determine the ideality factor (n), the zero-barrier height (Φbo) and the saturation current (IS) evaluated to 2.878, 0.652 and 3.61 × 10−7 A, respectively. The diode shows non-ideal I-V behavior with ideality factor greater than unity. This behavior can be attributed to the interfacial insulator layer, the surface states, series resistance and the formation barrier inhomogeneity at metal-semiconductor interface. From the C-f and G-f characteristics, the energy distribution of surface states (Nss) and their relaxation time (τ) have been determined in the energy range of (Ec − 0.493Ev)-(Ec − 0.610) eV taking into account the forward bias I-V data. The values of Nss and τ change from 9.35 × 1013 eV−1 cm−2 to 2.73 × 1013 eV−1 cm−2 and 1.75 × 10−5 s to 4.50 × 10−4 s, respectively.  相似文献   

6.
The effect of tetramethylammonium hydroxide (TMAH) treatment on the electrical properties of Ni/Au/GaN Schottky diodes have been investigated by current–voltage (IV) and capacitance–voltage (CV) techniques. The barrier heights and ideality factors measured from IV characteristics are found to be 0.70 eV and 1.32 for without TMAH treatment, and 0.78 eV and 1.14 for with TMAH treatment, respectively. Cheung method is used to measure the series resistance and barrier height of the Schottky diodes, and the barrier height consistency is checked using the Norde method. The magnitude of interface state density for the diodes without and with TMAH treatment are varied from 7.45 × 1013 eV−1 cm−2 to 6.09 × 1012 eV−1 cm−2 and 4.03 × 1013 eV−1 cm−2 to 1.79 × 1012 eV−1 cm−2 in the below the conduction band from EC-0.19 eV to EC-0.63 eV and EC-0.22 eV to EC-0.73 eV. Based on the results, the TMAH treatment effectively removes of surface oxide (GaxOy) layer, formed due to the incorporation of the residual oxygen with Ga atom at the GaN surface during the plasma etching. The decrease in interface state density at the Ni/Au/GaN interface could be the reason for the improvement in the electrical properties.  相似文献   

7.
Ö. Faruk Yüksel  S.B. Ocak 《Vacuum》2008,82(11):1183-1186
High frequency characteristics of tin oxide (SnO2) thin films were studied. SnO2 thin films have been successfully grown on n-type Si (111) substrates by using a spray deposition technique. The capacitance-voltage (C-V) and conductance-voltage (G/ω-V) characteristics of the metal-oxide-semiconductor (Au/SnO2/n-Si) Schottky diodes were investigated in the high frequency range from 300 kHz to 5 MHz. It has been shown that the interface state density, Dit, ranges from 2.44 × 1013 cm−2 eV−1 at 300 kHz to 0.57 × 1013 cm−2 eV−1 at 5 MHz and exponentially decreases with increasing frequency. The C-V and G/ω-V characteristics confirm that the interface state density and series resistance of the diode are important parameters that strongly influence the electrical parameters exhibited by the metal-oxide-semiconductor structure.  相似文献   

8.
The energy distribution and density of interface traps (Dit) are directly investigated from bulk-type and thin-film transistor (TFT)-type charge trap flash memory cells with tunnel oxide degradation, under program/erase (P/E) cycling using a charge pumping (CP) technique, in view of application in a 3-demension stackable NAND flash memory cell. After P/E cycling in bulk-type devices, the interface trap density gradually increased from 1.55 × 1012 cm−2 eV−1 to 3.66 × 1013 cm−2 eV−1 due to tunnel oxide damage, which was consistent with the subthreshold swing and transconductance degradation after P/E cycling. Its distribution moved toward shallow energy levels with increasing cycling numbers, which coincided with the decay rate degradation with short-term retention time. The tendency extracted with the CP technique for Dit of the TFT-type cells was similar to those of bulk-type cells.  相似文献   

9.
The rectifying junction characteristics of the organic compound pyronine-B film on a p-type Si substrate have been studied. The pyronine-B has been sublimed onto the top of p-Si surface. The barrier height and ideality factor values of 0.79 eV and 1.125 for this structure have been obtained from the forward-bias current–voltage characteristics. The density distribution of the interface states in the inorganic semiconductor bandgap and their relaxation time have been determined from the low-capacitance–frequency characteristics by the Schottky capacitance spectroscopy method. The measurement frequency varies from 90 Hz to 10 MHz. The interface state density Nss ranges from 2.10×1010 cm–2 eV–1 in (0.79–Ev) eV to 1.16×1012 cm–2 eV–1 in (0.53–Ev) eV. Furthermore, the relaxation time ranges from 1.38×10–3 s in (0.53–FV) eV to 7.50×10–3 s in (0.79–EV) eV.  相似文献   

10.
B. Boyarbay  A. Uygun 《Thin solid films》2010,518(8):2216-2221
Au/PANI/p-Si/Al and Au/PANI TiO2 TTAB/p-Si/Al heterojunctions have been fabricated by spin coating of soluble polyaniline (PANI) and PANI titanium dioxide (TiO2) tetradecyltrimethylammonium bromide (TTAB) on the chemically cleaned p-Si substrates. The thicknesses of the polymeric films have been determined by a profilometer. The current-voltage (I-V) characteristics of the heterojunctions have been obtained in the temperature range of 98-258 K. These devices have showed the rectifying behavior such as diode. The I-V characteristics of the devices have been analyzed on the basis of the standard thermionic emission theory at low forward bias voltage regime. It has been shown that the values of ideality factor decrease while the values of barrier height increase with increasing temperature. This temperature dependence has been attributed to the presence of barrier inhomogeneities at the organic/inorganic semiconductor interface. Furthermore, analysis of the double logarithmic I-V plots at higher forward bias voltages at all temperatures indicates that transport through the organic thin film is explained by a space-charge-limited current process characterized by exponential distribution of traps within the band gap of the organic film. The total concentration of traps has been found to be 3.52 × 1014 cm− 3 and 3.14 × 1015 cm− 3 for PANI and PANI TiO2 TTAB layer, respectively.  相似文献   

11.
Çi?dem Nuho?lu  Yasir Gülen 《Vacuum》2010,84(6):812-6439
The current-voltage and capacitance-voltage characteristics of Au/n-Si/Al Schottky barrier diode were measured in the temperature range of 100-800 °C. Au/n-Si/Al Schottky barrier diode annealed at temperatures from 100 °C to 400 °C for 5 min and from 500 °C to 800 °C for 7 min in N2 atmosphere. The electronic parameters such as barrier height and ideality factor (n) of the device were determined using Cheung's method. To determine whether or not a Schottky diode is ideal it can be used the ideality factor (n) found from its forward current-voltage (I-V) characteristics. It has been found that the value of Φb (0.82 or 0.83 eV) remains constant up to 500 °C and 0.80 and 0.79 eV in 600, 750 °C respectively in the forward I-V mode. An ideality factor value of 1.04 was obtained for as-deposited sample. The ideality factor n varied from 1.04 to 2.30. The experimental results have shown that the ideality factor (n) values increases with increasing annealing temperature up to 750 °C. This has been explained in terms of the presence of different metallic-like phases produced by chemical reactions between the Au and Si substrate because of the annealing process. The Φb (C-V) values obtained from the reverse-bias C−2-V curves of the as-deposited and annealed diode are in the range 0.99-1.12 eV. The difference between Φb (C-V) and the Φb (I-V) is in close agreement with values reported in literature. Besides Fermi energy level and carrier concentration determined by using thermionic emission (TE) mechanism show strong temperature dependence. It has been seen current-voltage characteristics of the diode show an ideal behavior.  相似文献   

12.
In this work, we report a study of the optical properties measured through spectral transmission and spectroscopic ellipsometry in Ge:H and GeYSi1 − Y:H (Y ≈ 0.97) films deposited by low frequency (LF) PE CVD with hydrogen (H) dilution. The dilution was varied in the range of R = 20 to 80. It was observed that H-dilution influences in a different way on the interface and bulk optical properties, which also depend on incorporation of silicon. The films with low band tail characterized by its Urbach energy, EU, and defect absorption, αD, have been obtained in Ge:H films for R = 50 with EU = 0.040 eV and αD = 2 × 103 cm− 1 (hν ≈ 1.04 eV), and in GeYSi1 − Y:H films for R=75 with EU = 0.030 eV and αD = 5 × 102 cm− 1 (hν ≈ 1.04 eV).  相似文献   

13.
J.P. Kar  S. Tuli 《Vacuum》2006,81(4):494-498
An attempt to correlate deposition-induced effects and the morphological properties with the electrical properties of the aluminum nitride (AlN) films have been made. The AlN film was sputter deposited on silicon while increasing the pressure in steps from 2×10−3 to 8×10−3 mbar. An X-ray diffractogram revealed that the intensity of (0 0 2) orientation increased till 6×10−3 mbar pressure, but it changed to (1 0 0) orientation of the AlN film at 8×10−3 mbar. The FTIR spectra of the absorption band of the films were observed around 682 cm−1 and became prominent at 6×10−3 mbar. A decrease in the grain size was seen by SEM images at 8×10−3 mbar. The AFM measurements revealed that the surface roughness varied from 1.56 to 3.24 nm with pressure. It was found that the insulator charge density (Qin) increased from 1.4×1011 cm−2 to 1.3×1012 cm−2 with increase in pressure. On the other hand, the interface state density (Dit) was found minimum (7.3×1011 eV−1 cm−2) at 6×10−3 mbar. It is found that presence of the Qin and Dit are primarily governed by the sputtering pressure of the AlN film.  相似文献   

14.
Clas Persson 《Thin solid films》2009,517(7):2374-7507
Green's functions modelling of the impurity induced effects in p-type CuIn1 − xGaxS2 and CuIn1 − xGaxSe2 (x = 0.0, 0.5, and 1.0) reveals that: (i) the critical active acceptor concentration for the metal non-metal transition occurs at Nc ≈ 1017-1018 cm− 3 for impurities with ionization energy of EA ≈ 30-60 meV. (ii) For acceptor concentrations NA > Nc, the hole gas of the metallic phase affects the band-edge energies and narrows the energy gap Eg = Eg0 − ΔEg. The energy shift of the valence-band maximum ΔEv1 is roughly twice as large as the shift of the conduction-band minimum ΔEc1. (iii) ΔEv1 depends strongly on the non-parabolicity of the valence bands. (iv) Sulfur based compounds and Ga-rich alloys have the largest shifts of their band edges. (v) A high active acceptor concentrations of NA = 1020 cm− 3 implies a band-gap narrowing in the order of ΔEg ≈ 0.2 eV, thus Eg = Eg0 − 0.2 eV, and an optical band gap of Egopt ≈ Eg0 − 0.1 eV.  相似文献   

15.
Polycarbonate samples were implanted with 100 keV N+ ions at fluences 1015, 1016 and 5 × 1016 ions cm−2. Drastic alterations in UV-Visible transmittance spectra were observed which are interrelated with change in surface color and optical absorption of the implanted samples. UV-Visible transmission studies show that at ion fluence of 1016 ions cm−2, transmission approaches to zero at about λ = 427 nm and below up to 200 nm. Optical band gap (EOPT) reduces with increase in fluence and at maximum ion fluence of 5 × 1016 N+ cm−2, EOPT was determined to be 1.56 eV whereas for pristine its value was 3.00 eV. Raman analysis indicates the formation of amorphous carbon on the surface of polycarbonate at an ion fluence of 1016 N+ cm−2. Rise in fluence to 5 × 1016 N+ cm−2 results in enhancement in disorder on the surface of the host polymer. Modifications in the structural arrangements were found to be in strong association with changes in optical properties with increase in ion fluence and the same is discussed.  相似文献   

16.
We have etched Sb-doped n-type (111) oriented Ge by inductively coupled plasma (ICP), using argon, and subsequently studied the defects that this process introduced as well as the effect of this etching on Schottky barrier diode quality. Deep level transient spectroscopy (DLTS) revealed that ICP etching introduced only one prominent defect, EP0.31, in Ge with a level at 0.31 eV below the conduction band. The properties of this defect are different to those of defects introduced by other particle-related processing steps, e.g. sputter deposition and electron beam deposition, that each introduces a different set of defects. DLTS depth profiling revealed the EP0.31 concentration was a maximum (3.6 × 1013 cm 3) close to the Ge surface and then it decreased more or less exponentially into the Ge. Annealing at 250 °C reduced the EP0.31 concentration to below the DLTS detection limit. Finally, current-voltage (I-V) measurements as a function of temperature revealed that the quality of Schottky contacts fabricated on the ICP-etched surfaces was excellent at − 100 K the reverse leakage current at − 1 V was below 10 13 A (the detection limit of our I-V instrumentation).  相似文献   

17.
Lithium ion conducting glass and glass ceramic of the composition Li1.4[Al0.4Ge1.6(PO4)3], have been synthesized. The monolithic glass pieces on thermal treatment resulted in single-phase glass ceramic with the Nasicon structure. Experiments with different electrodes proved that the lithium electrodes provide accurate values for the ionic conductivity using impedance spectroscopy. σionic of the glass ceramic was found to be 3.8×10−5 S cm−1 at 40°C with an activation energy (Ea) of 0.52 eV. The corresponding values for the glass are 2.7×10−9 S cm−1 and 0.95 eV, respectively. The Arrhenius dependence of σionic with temperature in glass and glass ceramic is interpreted with a hopping mechanism from which the microscopic characteristics of the lithium cation motion are deduced.  相似文献   

18.
Zinc oxide (ZnO) was incorporated into metal-insulator-semiconductor (MIS) structures featuring high dielectric constant (high-κ) barium tantalate (BaTa2O6)or alumina (Al2O3)as the insulator, and the structures were electrically evaluated for potential applications in transparent thin film transistors. The ZnO films were deposited by radio-frequency magnetron sputtering at 100 °C whereas the dielectric films were deposited by the same method at room temperature. The leakage currents of both the BaTa2O6 and Al2O3 structures were on the order of 10−7A/cm2. The trap density and trapped charge concentration at the BaTa2O6/ZnO interface were determined to be 6.18 × 1011 eV−1 cm−2and 5.82 × 1011 cm−2 from conductance-voltage and capacitance-voltage measurements. At the Al2O3/ZnO interface the trap density and trapped charge were more than an order of magnitude smaller at 1.09 × 1010 eV−1 cm−2and 1.04 × 1010 cm−2 respectively. The BaTa2O6 structures had significantly larger frequency dispersions due to the larger number of interface traps. Chemical analysis using X-ray photoelectron spectroscopy with depth profiling indicates that acceptor type defects associated with a deficiency of oxygen are related to the observed electron trapping in the BaTa2O6MIS structure. Overall, the results indicate that Al2O3 would be better suited for transparent thin film transistors deposited at low temperature or without substrate heating.  相似文献   

19.
Two kinds of HfSiOx/interlayers (ILs)/Ge gate stack structures with HfGeN- and GeO2-ILs were fabricated using electron cyclotron resonance (ECR) plasma sputtering and the subsequent post deposition annealing (PDA). It was found that HfGe was formed by the deposition of Hf metal on Ge and changed to HfGeN by N2 ECR-plasma irradiation, which was used as IL. Another IL was GeO2, which was grown by thermal oxidation at 500 °C. For dielectrics with HfGeN-IL, PDA of 550 °C resulted in effective oxide thickness (EOT) of 2.2 nm, hysteresis of 0.1 V, and interface state density (Dit) = 7 × 1012 cm− 2 eV− 1. For dielectrics with GeO2-IL, PDA of 500 °C resulted in EOT of 2.8 nm, hysteresis of 0.1 V, and Dit = 1 × 1012 cm− 2 eV− 1. The structural change of HfSiOx/GeO2/Ge during the PDA was clarified by using X-ray photoelectron spectroscopy, and the gate stack formation for obtaining the good IL was discussed.  相似文献   

20.
S.K. Patra 《Vacuum》2004,74(1):93-97
Diamond-like carbon films were deposited on p-type silicon substrates by ECR-plasma decomposition of methane. The films have been characterized by scanning electron microscopy and Fourier transformed infrared spectroscopy. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics were measured allowing interface trapped charges to be estimated. The density of states near to the Fermi level was calculated from the measurements to be of the order of 1019 cm−3 eV−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号