首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M.C. Liao  G.S. Chen 《Thin solid films》2010,518(24):7258-7262
A series of TiO2 thin films was deposited onto glass substrates without intentional heating or biasing by magnetron sputtering of a titanium target using Ar/O2 reactive mixtures over a broad range of total sputtering pressures from 0.12 Pa to 2.24 Pa. Each of the film types was deposited by the threshold poisoned mode at a specific given oxygen flow rate monitored in-situ by optical emission spectroscopy. Both the sputtering pressure and thermal annealing are the key factors for the TiO2 films to yield fast-response superhydrophilicity with a water contact angle of 5°. The mechanism of superhydrophilicity for the TiO2 films deposited by high-pressure sputtering will be discussed based on empirical studies of X-ray diffractometry, high-resolution scanning microscopy and atomic force spectroscopy.  相似文献   

2.
A serial of crystalline titanium oxide ceramic films were deposited at low temperature using microwave electron cyclotron resonance (MW-ECR) magnetron sputtering with different O2/Ar ratios. The influences of O2/Ar ratio on the deposition rate, morphology, crystalline nature, optical adsorption property of the obtained titanium oxide thin films were investigated by means of X-ray diffraction (XRD), atomic force microscopy (AFM) and UV-Vis spectra. Therefore, the optimum O2/Ar ratio for deposition of anatase TiO2 thin films on unheated glass substrate was realized in a MW-ECR magnetron sputtering process. The as-deposited anatase TiO2 films were transparent and were antireflective in the visible region.  相似文献   

3.
This paper describes the growth condition of stoichiometric ZrO2 thin films on Si substrates and the interfacial structure of ZrO2 and Si substrates. The ZrO2 thin films were prepared by rf-magnetron sputtering from Zr target with mixed gas of O2 and Ar at room temperature followed by post-annealing in O2 ambient. The stoichiometric ZrO2 thin films with smooth surface were grown at high oxygen partial pressure. The thick Zr-free SiO2 layer was formed with both Zr silicide and Zr silicate at the interface between ZrO2 and Si substrate during the post-annealing process due to rapid diffusion of oxygen atoms through the ZrO2 thin films. After post annealing at 650-750 °C, the multi-interfacial layer shows small leakage current of less than 10−8 A/cm2 that is corresponding to the high-temperature processed thermal oxidized SiO2.  相似文献   

4.
Sol-gel SiO2/TiO2 and TiO2/SiO2 bi-layer films have been deposited from a polymeric SiO2 solution and either a polymeric TiO2 mother solution (MS) or a derived TiO2 crystalline suspension (CS). The chemical and structural properties of MS and CS bi-layer films heat-treated at 500 °C have been investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscospy. Water contact angle measurements show that MS SiO2/TiO2 and CS TiO2/SiO2 bi-layer films exhibit a natural superhydrophilicity, but cannot maintain a zero contact angle for a long time over film aging. In contrast, CS SiO2/TiO2 bi-layer films exhibit a natural, persistent, and regenerable superhydrophilicity without the need of UV light. Superhydrophilic properties of bi-layer films are discussed with respect to the nature of the TiO2 single-layer component and arrangement of the bi-layer structure, i.e. TiO2 underlayer or overlayer.  相似文献   

5.
HfO2 films at various O2/Ar flow ratios were prepared by reactive dc magnetron sputtering. The effects of O2/Ar ratio on the structure and properties of HfO2 films were studied using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and UV-Visible spectroscopy. The results showed that the HfO2 films were amorphous at different O2/Ar ratios, and the atomic ratio of O/Hf in the HfO2 films at high O2/Ar ratio was nearly to 2:1. The peaks of Hf4f and O1s shifted to higher binding energy with increasing the oxygen flow proportion. The HfO2 films at high O2/Ar ratio had high transmissivity at the range of 400-1100 nm.  相似文献   

6.
The synthesis and characterization of the Ba2TiSi2O8 films are described. The Ba2TiSi2O8 crystal was obtained after heat treatment at above 630 °C of a sol-gel derived glassy material which has a chemical composition (mole ratio) 2BaO, TiO2, 2SiO2, and then the Ba2TiSi2O8 films were formed from the hydration of CaO-P2O5 glass powders. Heat treatment conditions and crystallization of the synthesized materials were studied by DSC-TG, XRD, and FT-IR. Second order nonlinear optical property has been verified by second harmonic generation test at 1064 nm. These results showed that the hydration process has a potential in rendering shape-comfortable optical materials.  相似文献   

7.
A novel two-step process was developed to synthesize and deposit SiO2/TiO2 multilayer films onto the cotton fibers. In the first step, SiO2 particles on cotton fiber surface were synthesized via tetraethoxysilane hydrolysis in the presence of cotton fibers, in order to protect the fibers against photo-catalytic decomposition by TiO2 nanoparticles. In the second step, the growth of TiO2 nanoparticles into the modified cotton fiber surface was carried out via a sol-gel method at the temperature as low as 100 °C. The as-obtained SiO2/TiO2 multilayer films coated on cotton fibers were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, atomic force microscopy and X-ray diffraction, respectively.  相似文献   

8.
In this work, we investigated the etching characteristics of TiO2 thin films and the selectivity of TiO2 to SiO2 in a BCl3/Ar inductively coupled plasma (ICP) system. The maximum etch rate of 84.68 nm/min was obtained for TiO2 thin films at a gas mixture ratio of BCl3/Ar (25:75%). In addition, etch rates were measured as a function of etching parameters, such as the RF power, DC-bias voltage and process pressure. Using the X-ray photoelectron spectroscopy analysis the accumulation of chemical reaction on the etched surface was investigated. Based on these data, the ion-assisted physical sputtering was proposed as the main etch mechanism for the BCl3-containing plasmas.  相似文献   

9.
Youl-Moon Sung 《Thin solid films》2007,515(12):4996-4999
Sputter deposition followed by surface treatment was studied using reactive RF plasma as a method for preparing titanium oxide (TiO2) films on indium tin oxide (ITO) coated glass substrate for dye-sensitized solar cells (DSCs). Anatase structure TiO2 films deposited by reactive RF magnetron sputtering under the conditions of Ar/O2(5%) mixtures, RF power of 600 W and substrate temperature of 400 °C were surface-treated by inductive coupled plasma (ICP) with Ar/O2 mixtures at substrate temperature of 400 °C, and thus the films were applied to the DSCs. The TiO2 films made on these experimental bases exhibited the BET specific surface area of 95 m2/g, the pore volume of 0.3 cm2/g and the TEM particle size of ∼ 25 nm. The DSCs made of this TiO2 material exhibited an energy conversion efficiency of about 2.25% at 100 mW/cm2 light intensity.  相似文献   

10.
Yusuke Nihei 《Thin solid films》2008,516(11):3572-3576
Inductively coupled plasma (ICP)-assisted sputtering with an internal coil enabled deposition of stoichiometric crystalline vanadium dioxide (VO2) films on a sapphire (Al2O3) (001) substrate under widely various deposition conditions. The films showed a metal-insulator (M-I) transition around temperatures of 68 °C with several orders of change in resistivity. Particularly, low-temperature (250 °C) growth of VO2 film with two orders transition decade was achieved in ICP-assisted sputtering, in contrast with conventional sputtering, which required 400 °C for VO2 growth. Rutherford back scattering (RBS) measurements revealed that the VO2 film prepared by ICP-assisted sputtering was exactly stoichiometric, containing no impurity atoms from the inserted coil material. The ICP-assisted sputtering was examined in comparison to conventional sputtering in view of plasma characteristics.  相似文献   

11.
The deposition of rutile phase TiO2 films on unheated substrates by radio frequency magnetron sputtering is elaborated. The effect of total pressure and O2/Ar flow ratio on the growth of rutile film on different substrates has been studied thoroughly. The development of crystalline phase along with film deposition rate, surface morphology, optical transmission and band gap were also investigated for various growth conditions. It was found that the rutile phase crystallinity increased with decrease in total pressure and increase in O2 flow. In addition, the grown rutile films have interesting optical characteristics such as high transmittance (~ 85%) and high refractive index (~ 2.7) with a band gap about 3.2 eV.  相似文献   

12.
Cheng-Hsing Hsu 《Thin solid films》2009,517(17):5061-1132
Zirconium tin titanium oxide doped 1 wt.% ZnO thin films on n-type Si substrate were deposited by rf magnetron sputtering at a fixed rf power of 300 W, a substrate temperature of 450 °C, a deposition pressure of 5 mTorr and an Ar/O2 ratio of 100/0 with various annealing temperatures and annealing times. Electrical properties and microstructures of 1 wt.% ZnO-doped (Zr0.8Sn0.2)TiO4 thin films prepared by rf magnetron sputtering on n-type Si(100) substrates at different annealing temperatures (500 °C-700 °C) and annealing times (2 h-6 h) have been investigated. The structural and morphological characteristics analyzed by X-ray diffraction (XRD) and atomic force microscope (AFM) were sensitive to the treatment conditions such as annealing temperature and annealing time. At an annealing temperature of 600 °C and an annealing time of 6 h, the ZnO-doped (Zr0.8Sn0.2)TiO4 thin films possess a dielectric constant of 46 (at f = 10 MHz), a dissipation factor of 0.059 (at f = 10 MHz), and a low leakage current density of 3.8 × 10− 9 A/cm2 at an electrical field of 1 kV/cm.  相似文献   

13.
We report on photo-fixation of SO2 onto nanostructured TiO2 thin films prepared by reactive DC magnetron sputtering. The films were exposed to 50 ppm SO2 gas mixed in synthetic air and illuminated with UV light at 298 and 473 K. The evolution of the adsorbed SOx species was monitored by in situ Fourier transform infrared specular reflection spectroscopy. Significant photo-fixation occurred only in the presence of UV illumination. The SO2 uptake was dramatically enhanced at elevated temperatures and then produced strongly bonded surface-coordinated SOx complexes. The total SOx uptake is consistent with Langmuir adsorption kinetics. The sulfur doping at saturation was estimated from X-ray photoelectron spectroscopy to be ~ 2.2 at.% at 473 K. These films were pale yellowish and had an optical absorption coefficient being ~ 3 times higher than in undoped film. The S-doped films exhibit interesting oleophobic properties, exemplified by the poor adherence of stearic acid. Our results suggest a new method for sulfur doping of TiO2 to achieve combined anti-grease and photocatalytic properties.  相似文献   

14.
Anatase titanium dioxide (TiO2) thin films with high photocatalytic activity have been prepared with deposition rates as high as 16 nm/min by a newly developed vacuum arc plasma evaporation (VAPE) method using sintered TiO2 pellets as the source material. Highly transparent TiO2 thin films prepared at substrate temperatures from room temperature to 400 °C exhibited photocatalytic activity, regardless whether oxygen (O2) gas was introduced during the VAPE deposition. The highest photocatalytic activity and photo-induced hydrophilicity were obtained in anatase TiO2 thin films prepared at 300 °C, which correlated to the best crystallinity of the films, as evidenced from X-ray diffraction. In addition, a transparent and conductive anatase TiO2 thin film with a resistivity of 2.6 × 10− 1 Ω cm was prepared at a substrate temperature of 400 °C without the introduction of O2 gas.  相似文献   

15.
We propose a new high-rate reactive sputter-deposition method with two sputtering sources for fabricating TiO2 films. One source operates in a metal mode sputtering condition and supplies titanium atoms to the substrate. The other source operates in oxide mode and works as an oxygen radical source for supplying oxygen radicals to the substrate surface for promoting oxidization of titanium atoms. Each sputtering source is separated with a mesh grid from the deposition chamber, and Ar and oxygen gas are introduced separately through the titanium supply and oxygen radical sources, respectively. By using this reactive sputtering system, a deposition rate above 80 nm/min can be obtained for the deposition of TiO2 films with rutile structure.  相似文献   

16.
Titanium dioxide (TiO2) films have been successfully deposited on metal alloy substrates by radio-frequency magnetron reactive sputtering in an Ar+O2 gas mixture. The effects of gas total pressure on the structure and phase transition of TiO2 films were studied by X-ray diffraction and Raman spectra. It is suggested that the film structure changes from rutile to anatase while work gas total pressure changes from 0.2 to 2 Pa. The structure of TiO2 films is not affected by the film thickness.  相似文献   

17.
The effect of silicon dioxide (SiO2) on the hydrophilicity of the TiO2 thin film is investigated. SiO2 and TiO2 films were deposited on the glass by RF-magnetron sputtering. Heat-treatment for 15 h at 573 K on TiO2/glass and TiO2/SiO2/glass is carried out to make Na+-ion diffused from the glass to the TiO2 thin film, which results in no band-gap change but instead the enhanced crystallinity of the anatase phase-TiO2. This in turn leads to the improvement in hydrophilicity. Irrespective of the SiO2 interlayer, the anatase phase-TiO2 thin film with enhanced crystallinity shows outstanding super-hydrophilicity. Consequently, under the heat-treatment condition, the SiO2 interlayer played an important role in improving the crystallinity of the anatase phase-TiO2 rather than preventing Na+-ion diffusion.  相似文献   

18.
Nitrogen-doped titanium dioxide (TiO2  xNx) thin films desirable for visible light photocatalysts were prepared by reactive sputtering using air/Ar mixtures. Using air as the reactive gas allows the process to conduct at high base pressures (low vacuum), which reduces substantially the processing time. The obtained films transformed from mixed phases to anatase phase as the air/Ar flow ratio increased. Substitutional doping of nitrogen verified by X-ray photoelectron spectroscopy accounts for the red-shift of absorption edge in the absorption spectra. Anatase TiO2  xNx films could incorporate up to about 7.5 at.% substitutional nitrogen and a maximum of 23 at.% nitrogen was determined in the films with mixed phases. The optical band gaps of the TiO2  xNx films calculated from Tauc plots varied from 3.05 to 3.11 eV and those of the mixed phase ranged from 2.77 to 3.00 eV, which are all lower than that for pure anatase TiO2 and fall into the visible light regime.  相似文献   

19.
HfO2 thin films were prepared by reactive DC magnetron sputtering technique on (100) p-Si substrate. The effects of O2/Ar ratio, substrate temperature, sputtering power on the structural properties of HfO2 grown films were studied by Spectroscopic Ellipsometer (SE), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrum, and X-ray photoelectron spectroscopy (XPS) depth profiling techniques. The results show that the formation of a SiOx suboxide layer at the HfO2/Si interface is unavoidable. The HfO2 thickness and suboxide formation are highly affected by the growth parameters such as sputtering power, O2/Ar gas ratio during sputtering, and substrate temperature. XRD spectra show that the deposited films have (111) monoclinic phase of HfO2, which is also supported by FTIR spectra. XPS depth profiling spectra shows that highly reactive sputtered Hf atoms consume some of the oxygen atoms from the underlying SiO2 to form HfO2, leaving Si-Si bonds behind.  相似文献   

20.
This work reports on the synthesis and the structural and optical characterization of beta barium borate (β-BBO) thin films containing 4, 8 and 16 mol% of titanium oxide (TiO2) deposited on fused silica and silicon (0 0 1) substrates using the polymeric precursor method. The thin films were characterized by X-ray diffraction, Raman spectroscopy, atomic force microscopy and scanning electron microscopy techniques. The optical transmission spectra of the thin films were measured over a wavelength range of 800-200 nm. A decrease was observed in the band gap energy as the TiO2 content was raised to 16 mol%. Only the β-BBO phase with a preferential orientation in the (0 0 l) direction was obtained in the sample containing 4 mol% of TiO2 and crystallized at 650 °C for 2 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号