首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bao-Yuan Liu  John Q. Xiao 《Vacuum》2006,81(3):317-320
Amorphous CoNbZr alloys are thermally stable and thus have been intensively studied as soft layers of a pseudo-spin-valve (PSV). By depositing a wedge-shaped Co inset layer (IL) between the CoNbZr and Cu layer, we were able to simultaneously fabricate CoNbZr(tCNZ)/Co(0-3 nm)/Cu/Co PSVs with various CoNbZr and Co IL thicknesses. We have investigated the dependence of magnetic properties, giant magnetoresistance (GMR) effect, and microstructure on the thickness of the amorphous CoNbZr buffer layer. The GMR enhancement behaviour of the PSVs with different CoNbZr thickness was also studied along the inset Co wedge. By optimizing the thickness of CoNbZr and Co IL, a maximum GMR ratio of 7% was obtained in the stack of CoNbZr(4 nm)/Co(1.2 nm)/Cu(2.2 nm)/Co(4 nm).  相似文献   

2.
Ga doped ZnO(GZO)/Cu/GZO multilayers were deposited by magnetron sputtering on polycarbonate substrates at room temperature. We investigated the structural, electrical, and optical properties of multilayers at various thicknesses of Cu and GZO layers. The lowest resistivity value of 3.3 × 10− 5 Ω cm with a carrier concentration of 2.9 × 1022 cm− 3 was obtained at the optimum Cu (10 nm) and GZO (10 nm) layer thickness. The highest value of figure of merit φTC is 2.68 × 10− 3 Ω− 1 for the GZO (10 nm)/Cu(10 nm)/GZO(10 nm) multilayer. The highest average near infrared reflectivity in the wavelength range 1000-2500 nm is as high as 70% for the GZO(10 nm)/Cu(10 nm)/GZO(10 nm) multilayer.  相似文献   

3.
Youxing Yu  Yoshio Nakamura 《Vacuum》2009,84(1):158-161
The magnetic anisotropy was studied as a function of the AlN layer thickness in [AlN(x nm)/CoPt(2 nm)]5/AlN(x nm) layered structure (x is AlN layer thickness, and 5 is the number of multilayer series). The multilayered film was deposited by a sputtering apparatus equipped with two pairs of facing targets. It was found that, in the range of AlN layer thickness below 30 nm, CoPt/AlN multilayers transform from an enhanced in-plane magnetic anisotropy to perpendicular magnetic anisotropy (PMA) through thermal annealing in vacuum, with an optimized AlN thickness of 10 nm for strong PMA. However, beyond this thickness range, the PMA did not occur, and thermal annealing only results in magnetic isotropy in both parallel and perpendicular directions. The related structure analysis revealed that smooth interface and good texture of CoPt (111) make positive contributions to interface anisotropy energy and magnetocrystalline anisotropy energy for producing PMA in CoPt/AlN layered structure. In addition, the transport phenomena were also studied by using a four-probe method.  相似文献   

4.
Highly c-axis oriented ZnO thin films were grown on Si (100) substrates with Zn buffer layers. Effects of the Zn buffer layer thickness on the structural and optical qualities of ZnO thin films were investigated for the ZnO films with the buffer layers 90, 110, and 130 nm thick using X-ray diffraction (XRD), photoluminescence (PL) and atomic force microscopy (AFM) analysis techniques. It was confirmed that the quality of a ZnO thin film deposited by RF magnetron sputtering was substantially improved by using a Zn buffer layer. The highest ZnO film quality was obtained with a Zn buffer layer 110 nm thick. The surface roughness of the ZnO thin film increases as the Zn buffer layer thickness increases.  相似文献   

5.
FePt (50 nm) and [FePt(xnm)/AlN(1, 2, 3 nm)]10 (x=2, 3 nm) films were prepared by RF magnetron sputtering technique, then were annealed at 550 °C for 30 min. This work investigates the effect of AlN layer thickness on structure and magnetic properties of FePt/AlN multilayers. Superlattice (0 0 1) peaks can be found in the grazing incidence X-ray diffraction of FePt and [FePt (3 nm)/AlN (1, 2, 3 nm)]10 films, which indicate that the FCC phase has been partially transformed into ordered L10 phase. Compared with the single layer FePt film, superlattice (0 0 1) peaks of FePt/AlN multilayers are weak and wide, which indicates that the introducing of AlN hinders the growth of FePt particle, and also shows the introducing of AlN is not beneficial to the transformation from FCC phase to L10 phase. In addition, the low-angle XRD spectra show the layered structure of FePt/AlN has been broken after annealing. The coercivities, particle size, intergrain exchange interactions of FePt/AlN films are decreased with increasing AlN layer thickness.  相似文献   

6.
Highly conducting tri-layer films consisting of a Cu layer sandwiched between Al-doped ZnO (AZO) layers (AZO/Cu/AZO) were prepared on glass substrates at room temperature by radio frequency (RF) magnetron sputtering of AZO and ion-beam sputtering of Cu. The tri-layer films have superior photoelectric properties compared with the bi-layer films (Cu/AZO, AZO/Cu) and single AZO films. The effect of AZO thickness on the properties of the tri-layer films was discussed. The X-ray diffraction spectra show that all films are polycrystalline consisting of a Cu layer with the cubic structure and two AZO layers with the ZnO hexagonal structure having a preferred orientation of (0 0 2) along the c-axis, and the crystallite size and the surface roughness increase simultaneously with the increase of AZO thickness. When the AZO thickness increases from 20 to 100 nm, the average transmittance increases initially and then decreases. When the fixed Cu thickness is 8 nm and the optimum AZO thickness of 40 nm was found, a resistivity of 7.92 × 10−5 Ω cm and an average transmittance of 84% in the wavelength range of visible spectrum of tri-layer films have been obtained. The merit figure (FTC) for revaluing transparent electrodes can reach to 1.94 × 10−2 Ω−1.  相似文献   

7.
We report the growth and properties of highly c-axis oriented ZnO films, by radio-frequency magnetron sputtering, on the growth side of freestanding chemical vapor deposited diamond film-substrate. Low-temperature ZnO buffer layer is required for the formation of continuous ZnO films. The morphology, structure, and optical properties of the ZnO films deposited are strongly dependent on the thickness of the buffer layer. The optimized thickness of ZnO buffer layer is about 10 nm to realize high-quality ZnO films having small compressive stress and high intensity ultraviolet emission. The ZnO/diamond (growth side) system is available for the applications in numerous fields, especially for high performance surface acoustic wave devices.  相似文献   

8.
Nanoscale Cu/Ta multilayers with individual layer thickness ranging from 3 to 70 nm were deformed under nanoindentation at room temperature. Shear bands can be observed only when individual layer thickness is reduced to 9 nm or below, indicating formation of shear bands in the Cu/Ta multilayers is layer thickness dependent. By observing the cross sectional transmission electron microscope images of the indentation fabricated through focused ion beam technique, shear banding deformation causing a unique layer-morphology with prevalent mismatched laminate structure has been reported for the first time. By capturing and analyzing a series of typical indentation-induced deformed microstructures, a new physical mechanism of shear banding behavior in metallic nano-multilayers is suggested.  相似文献   

9.
The microstructure and mechanical properties of Cu/Nb multilayers were investigated by X-ray diffraction, transmission electron microscopy, scanning electron microscopy and nanoindentation. Ultrahigh strength of 3.27 GPa is achieved at the smallest layer thickness of 2.5 nm, which agrees well with the theoretical prediction based on the deformation mechanism of crossing of dislocations across interfaces. After that, the strength decreases with the increasing layer thickness and the transition of the deformation mechanism to confined layer slip occurs at the layer thickness of 6.5 nm. Additionally, strength of the Cu/Nb multilayers increases with increasing loading strain rate because of enhanced strain hardening.  相似文献   

10.
In this report we describe some experimental results concerning the preparation by electrodeposition and characterization of Co/Zn multilayer films, a system of special significance because Co and Zn are immiscible in a large range of compositions, permitting an easier adaptation of the sharp interfaces and the magnetic interactions between layers, with a view to obtain technological applications in nano-electronics. We established the working parameters for electrodeposition of multilayer films based on Co and Zn nanoscale layers, using a dual-bath potentiostatic electrodeposition method. The effect of the first electrodeposited layer growth process on the structure and magnetic properties of the multilayer were studied by using two series of multilayers of varying periods, starting with Co or Zn layers, respectively (with the same total thickness of Co layers, namely 50 layers of 5 nm thick, but various Zn layer thickness). These properties were also studied as a function of the Zn layer thicknesses (varying between 0.1 nm and 5.9 nm), for the two series of films. The magnetoresistance (in the current in plane configuration with dc magnetic field applied in the film plane), varied with Zn layer thickness, exhibiting a giant magnetoresistance contribution of about 30% in the case of [Co (5 nm)/Zn (2.7 nm)]50 films.  相似文献   

11.
Molybdenum-oxide (MoO3)films were deposited on glass substrates (Corning #7059 with an area of 26 × 38 mm2) by pulsed laser deposition using an ArF excimer laser. It was found that after annealing at 340 °C for 10 min, the film thickness became 2.3 times that (approximately 30 nm) of the as-deposited film thickness. The difference in the transmittance, ΔT, between the annealed state and the as-deposited state was about 40% at a wavelength of 400 nm. X-ray diffraction spectra indicated that oxygen was absorbed into the MoO3 films through the annealing process. From revolution testing of 30 nm-thick MoO3 films without a protective layer deposited on a polycarbonate DVD-R disk substrate (120 mm?, 0.6 mm thickness), a write peak-power dependence of carrier-to-noise ratio (CNR) (recording on-land, at λ = 406 nm, NA = 0.65) of the 3T signal (58.5 MHz) was measured at a linear velocity of 5 m/s and a read power of 0.6 mW. Consequently, CNR near 50dB was obtained in the wide write-power margin ΔP of 7 mW (at peak powers between 3.5 and 10.5 mW). From SEM observations, it was recognized that bits of 0.25-0.30 μm size, corresponding to a storage capacity of 7-10GB/in2 in the case of NA = 0.65, were formed. For the sample structure with an Al2O3 protective layer of ~ 20 nm thickness, a CNR near 50dB was obtained in the peak-power margin ΔP of 12 mW (at peak powers between 6.0 and 18.0 mW). Larger values of the CNR can be obtained if the film thickness of each layer including both the active and protective layers is optimized.  相似文献   

12.
The Pb(Zr0.80Ti0.20)O3 (PZT) thin films with and without a PbO buffer layer were deposited on the Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by radio frequency (rf) magnetron sputtering method. The PbO buffer layer improves the microstructure and electrical properties of the PZT thin films. High phase purity and good microstructure of the PZT thin films with a PbO buffer layer were obtained. The effect of the PbO buffer layer on the ferroelectric properties of the PZT thin films was also investigated. The PZT thin films with a PbO buffer layer possess better ferroelectric properties with higher remnant polarization (Pr = 25.6 μC/cm2), and lower coercive field (Ec = 60.5 kV/cm) than that of the films without a PbO buffer layer (Pr = 9.4 μC/cm2, Ec = 101.3 kV/cm). Enhanced ferroelectric properties of the PZT thin films with a PbO buffer layer is attributed to high phase purity and good microstructure.  相似文献   

13.
A series of ZnO/Cu/ZnO multilayer films has been fabricated from zinc and copper metallic targets by simultaneous RF and DC magnetron sputtering. Numerical simulation of the optical properties of the multilayer films has been carried out in order to guide the experimental work. The influences of the ZnO and Cu layer thicknesses, and of O2/Ar ratio on the photoelectric and structural properties of the films were investigated. The optical and electrical properties of the multilayers were studied by optical spectrometry and four point probe measurements, respectively. The structural properties were investigated using X-ray diffraction. The performance of the multilayers as transparent conducting coatings was compared using a figure of merit. In experiments, the thickness of the ZnO layers was varied between 4 and 70 nm and those of Cu were between 8 and 37 nm. The O2/Ar ratios range from 1:5 to 2:1. Low sheet resistance and high transmittance were obtained when the film was prepared using an O2/Ar ratio of 1:4 and a thickness of ZnO (60 nm)/Cu (15 nm)/ZnO (60 nm).  相似文献   

14.
Generally, it is a challenge for superhard nitride films to possess strong enough fracture toughness. In the present study, a superhard nanocrystal- (nc-) Cr2N/amorphous- (a-) WC film was fabricated by arc ion plating and dc magnetron sputtering. The superlattice structure of nc-Cr2N with 9 nm thickness and a-WC with 3 nm thickness was alternately grown on amorphous Cr/WC buffer layer. Accordingly, the multilayers nc-Cr2N/a-WC nanocomposite showed a superhardness effect (~ 40 GPa) which presents an anomalous enhancement of hardness and elastic modulus. The adhesion strength of nc-Cr2N/a-WC multilayers on the steel substrate exceeded 60 N. The tribological behavior of the nc-Cr2N/a-WC film was proven that the superlattice nc-Cr2N/a-WC nanocomposites have significant potential for high-speed dry machining and other wear-resistance precise parts.  相似文献   

15.
Linear and nonlinear magnetooptics are applied to study the magnetic properties of Au/Co/Si planar nanostructures. The dependence of the nonlinear magneto-optical Kerr effect on the thickness of the cobalt layer, dCo, reaches a maximum at dCo ≈ 2 nm. This characteristic thickness is consistent with the formation of surface magnetization. An enhancement of the second harmonic generation (SHG) intensity and of magnetization-induced SHG is attained for an island-like structure of the cobalt layer, and is associated with the excitation of localized surface plasmons in cobalt nanoislands.  相似文献   

16.
Davinder Kaur 《低温学》2005,45(6):455-462
In the present study we report the measurements of microwave surface resistance (Rs) of YBCO thin films on LaAlO3 substrate as a function of temperature, thickness and magnetic field by microstrip resonator technique. The Tc(R = 0) of the films is 90 K and Jc > 106 A/cm2 at 77 K. The microwave surface resistance has been measured for films of various thicknesses. The value of Rs has been found to be initially decreased with increasing film thickness due to increase in number of defects. A minimum microwave surface resistance has been obtained for film thickness of about 300 nm. The increase of Rs with film thickness above 300 nm is possibly due to degradation of the film microstructure as observed with Atomic Force Microscopy. Temperature dependence of surface resistance has been studied for best quality films. The field induced variations of surface resistance are also investigated by applying dc magnetic field perpendicular to stripline structure and surface of the film. A general linear and square field dependence of Rs at low and high value of fields has been observed with critical field value of 0.4 T which confirms the microwave dissipation induced by flux flow in these resonators at 10 GHz frequency. The hysteresis of Rs in dc field observed for field value above critical field shows the higher value of surface resistance in decreasing field than in increasing field which is in agreement with one state critical model and is a characteristic of homogeneous superconductors.  相似文献   

17.
Transparent conductive ITO/Cu/ITO films were deposited on polyethylene terephthalate (PET) substrates with a SiO2 buffer layer by magnetron sputtering using three cathodes at room temperature. The effect of the SiO2 buffer layer thickness on the electrical and optical properties of ITO/Cu/ITO films was investigated. The ITO/Cu/ITO film deposited on the 40 nm thick SiO2 buffer layer exhibits a sheet resistance of 143Ω/sq and transmittance of 65% at 550 nm wavelength. Highly transparent ITO/Cu/ITO films with a transmittance of 80% and a sheet resistance of 98.7Ω/sq have been obtained by applying −60 V substrate bias.  相似文献   

18.
《Vacuum》2012,86(4):443-447
Transparent conductive ITO/Cu/ITO films were deposited on polyethylene terephthalate (PET) substrates with a SiO2 buffer layer by magnetron sputtering using three cathodes at room temperature. The effect of the SiO2 buffer layer thickness on the electrical and optical properties of ITO/Cu/ITO films was investigated. The ITO/Cu/ITO film deposited on the 40 nm thick SiO2 buffer layer exhibits a sheet resistance of 143Ω/sq and transmittance of 65% at 550 nm wavelength. Highly transparent ITO/Cu/ITO films with a transmittance of 80% and a sheet resistance of 98.7Ω/sq have been obtained by applying −60 V substrate bias.  相似文献   

19.
Reduction of copper oxide was performed using an atmospheric-pressure inductively coupled plasma (AP-ICP) microjet while varying the input power P between 15 and 50 W. Cuprous oxide (Cu2O) and cupric oxide (CuO) were formed on the sputtered Cu surface by thermal annealing. Dynamic behavior of the microplasma jet, optical emission from H atoms, the substrate temperature, chemical bonding states of the treated surface, and the thickness of the reduced Cu layer were measured to study the fundamental reduction process. Surface composition and the thickness of the reduced Cu layer changed significantly with P. Rapid reduction of CuO and Cu2O was achieved at a rate of 493 nm/min at P = 50 W since high-density H atoms were produced by the AP-ICP microjet.  相似文献   

20.
Relationship between metallic multilayers hardness and monolayer thickness has been investigated and explained for electroplated Ag/Cu and Cu/Ni multilayers using a modified Thomas-Fermi-Dirac electron theory. Experiments reveal that the peak hardness of Ag/Cu multilayers occurs at the monolayer thickness of about 25 nm, while the peak hardness of Cu/Ni multilayers occurs at about 50 nm. Critical monolayer thickness corresponding to the peak hardness is approximated by the grain size limit of stable dislocations in Ag crystals for the Ag/Cu multilayers and in Cu crystals for Cu/Ni multilayers. Grains size limits are calculated based on a modified Thomas-Fermi-Dirac electron theory. Developed relationship between the critical monolayer thickness and the grains size limit helps understand nanoscale metallic multilayers softening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号