首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
H. McI. Clark  R. J. Llewellyn   《Wear》2001,250(1-12):32-44
The wear environment of steels used for containing, transporting and processing erosive mineral slurries is often such that fluid borne particles form a layer moving at high speed across the wearing surface. Information on the performance ranking of such materials is limited, particularly with respect to the influence of steel hardness and microstructure on the resistance to erosion. This is particularly important for the oil sands industry of Northern Alberta where handling and processing of essentially silica-based solids results in extremely severe wear conditions. This paper presents slurry erosion data obtained on 11 commercially available wear resistant plate and pipeline steels with hardness values up to 750 HV. These data were obtained using a Coriolis erosion tester operated at 5000 rpm with an aqueous slurry containing 10 wt.% of 200–300 μm silica sand particles.

The Coriolis erosion tester was selected because it provides a low-angle scouring action that simulates the erosive conditions encountered in oil sands and tailings pipeline transport and in some related processing operations. Results show that this test method is able to discriminate clearly between the erosion resistance of these steels, expressed in terms of specific energy (the energy necessary to remove unit volume of test material), with the most erosion resistant steel being more than five times superior to the least resistant. A graphical relation between steel hardness and erosion resistance is given. A comparison is also made between slurry erosion data and the performance of the materials in the ASTM G65 dry sand rubber wheel (DSRW) sliding abrasion test. Comments on the influence of the macro- and microstructures of the steels on their wear behaviour are included.  相似文献   


2.
Degradation process of Ti(C,N)-based cermet is investigated in solid–liquid erosion conditions. The results indicate that the erosion process of Ti(C,N)-based cermet is classified into incubation, development and prevalence. In the incubation stage, the weight loss is dominated by binder deterioration; in the development stage, ceramic phase and binder failure contribute to the material loss; and in the prevalence stage, ceramic fragments removal is responsible for the material loss. Impingement of Al2O3 particle results in ceramic phase deterioration, while in binder the degradation is caused by impingement and microcutting. Microcracks nucleate firstly at the interface and/or in the rim phase.  相似文献   

3.
Effects of Cr3C2 on the erosion–corrosion behavior of Ti(C,N)-based cermets are studied in alkaline conditions. The results indicate that the erosion–corrosion resistance of cermets is improved with proper Cr3C2 content. Corrosion performance of cermets is deteriorated by Cr3C2 addition in NaOH solution. With the increase of Cr3C2, the erosion–corrosion behavior of Ti(C,N)-based cermets is classified to be erosion regime, erosion–corrosion regime, corrosion–erosion regime and corrosion regime. Materials degradation is determined by particles erosion for cermets with low Cr3C2 content, while for materials containing more Cr3C2 addition, binder corrosion and subsequent erosion are responsible for materials deterioration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号