首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the synthesis and characterization of CuIn1 − xGaxSe2 − ySy (CIGSeS) thin-film solar cells prepared by rapid thermal processing (RTP). An efficiency of 12.78% has been achieved on ~ 2 µm thick absorber. Materials characterization of these films was done by SEM, EDS, XRD, and AES. J-V curves were obtained at different temperatures. It was found that the open circuit voltage increases as temperature decreases while the short circuit current stays constant. Dependence of the open circuit voltage and fill factor on temperature has been estimated. Bandgap value calculated from the intercept of the linear extrapolation was 1.1-1.2 eV. Capacitance-voltage analysis gave a carrier density of 4.0 × 1015 cm− 3.  相似文献   

2.
The optical and electrical properties of vapour phase grown crystals of diluted magnetic semiconductor Zn1 − xCrxTe were investigated for 0 ≤ x ≤ 0.005. The diffuse reflectance spectra exhibited an increase in the fundamental absorption edge (E0) with composition x and were also dominated by a broad absorption band around 5200 cm− 1 arising from 5T2 → 5E transition. The 5T2 and 5E levels originate from the crystal field splitting of the 5D free ion in the ground state. The electrical resistivity measurements revealed semiconducting behaviour of the samples with p-type conductivity in the temperature range of 200-450 K.  相似文献   

3.
Zn1 − xMgxO thin films of various Mg compositions were deposited on quartz substrates using inexpensive ultrasonic spray pyrolysis technique. The influence of varying Mg composition and substrate temperature on structural, electrical and optical properties of Zn1 − xMgxO films were systematically investigated. The structural transition from hexagonal to cubic phase has been observed for Mg content greater than 70 mol%. AFM images of the Zn1 − xMgxO films (x = 0.3) deposited at optimized substrate temperature clearly reveals the formation of nanorods of hexagonal Zn1 − xMgxO. The variation of the cation-anion bond length to Mg content shows that the lattice constant of the hexagonal Zn1 − xMgxO decreases with corresponding increase in Mg content, which result in structure gradually deviating from wurtzite structure. The tuning of the band gap was obtained from 3.58 to 6.16 eV with corresponding increase in Mg content. The photoluminescence results also revealed the shift in ultraviolet peak position towards the higher energy side.  相似文献   

4.
N. Khemiri  M. Kanzari 《Thin solid films》2011,519(21):7201-7206
CuInS2, CuIn3S5, CuIn5S8 and CuIn7S11 compounds were synthesized by the horizontal Bridgman method using high-purity copper, indium and sulphur elements. Crushed powders of these ingots were used as raw materials for the vacuum thermal evaporation. So, CuIn2n + 1S3n + 2 (n = 0, 1, 2, and 3) thin films were deposited by single source vacuum thermal evaporation onto glass substrates heated at 150 °C. The structural, compositional, morphological, electrical and optical properties of the deposited films were studied using X-ray diffraction (XRD), energy dispersive X-ray, atomic force microscopy and optical measurement techniques. XRD results revealed that all the films are polycrystalline. However, CuInS2 and CuIn3S5 films had a chalcopyrite structure with preferred orientation along 112 while CuIn5S8 and CuIn7S11 films exhibit a spinel structure with preferred orientation along 311. The absorption coefficients of the all CuIn2n + 1S3n + 2 films are in the range of 10−4 and 10−5 cm−1. The direct optical band gaps of CuIn2n + 1S3n + 2 layers are found to be 1.56, 1.78, 1.75 and 1.30 eV for n = 0, 1, 2, and 3, respectively. CuIn3S5 and CuIn5S8 films are p type with electrical resistivities of 4 and 12 Ω cm whereas CuInS2 and CuIn7S11 are highly compensated with resistivities of 1470 and 1176 Ω cm, respectively.  相似文献   

5.
Cd(1 − x)ZnxS thin films have been grown on glass substrates by the spray pyrolysis method using CdCl2 (0.05 M), ZnCl2 (0.05 M) and H2NCSNH2 (0.05 M) solutions and a substrate temperature of 260 °C. The energy band gap, which depends on the mole fraction × in the spray solution used for preparing the Cd(1 − x)ZnxS thin films, was determined. The energy band gaps of CdS and ZnS were determined from absorbance measurements in the visible range as 2.445 eV and 3.75 eV, respectively, using Tauc theory. On the other hand, the values calculated using Elliott-Toyozawa theory were 2.486 eV and 3.87 eV, respectively. The exciton binding energies of Cd0.8Zn0.2S and ZnS determined using Elliott-Toyozawa theory were 38 meV and 40 meV, respectively. X-ray diffraction results showed that the Cd(1 − x)ZnxS thin films formed were polycrystalline with hexagonal grain structure. Atomic force microscopy studies showed that the surface roughness of the Cd(1 − x)ZnxS thin films was about 50 nm. Grain sizes of the Cd(1 − x)ZnxS thin films varied between 100 and 760 nm.  相似文献   

6.
Lead-free thick film negative temperature coefficient (NTC) thermistors based on perovskite-type BaCoIIxCoIII2xBi1 − 3xO3 (x ≤ 0.1) were prepared by mature screen-printing technology. The microstructures of the thick films sintered at 720 °C were examined by X-ray diffraction and scanning electron microscopy. The electrical properties were analyzed by measuring the resistance-temperature characteristics. For the BaBiO3 thick films, the room-temperature resistivity is 0.22 MΩ cm, while the room-temperature resistivity is sharply decreased to about 3 Ω cm by replacing of Bi with a small amount of Co. For compositions 0.02 ≤ x ≤ 0.1, the values of room-temperature resistivity (ρ23), thermistor constant (B25/85) and activation energy are in the range of 1.995-2.975 Ω cm, 1140-1234 K and 0.102-0.111 eV, respectively.  相似文献   

7.
A series of single phase solid-solution K4Ce2Ta10−xNbxO30 (x = 0-10) photocatalysts were synthesized by conventional high temperature solid state reaction. Their UV-vis diffuse reflectance spectra showed their absorbance edges shifted to long wavelength zone consistently with the increase of the amount of Nb for substituting Ta in these compounds, and the onsets of absorbance edges ranging from about 540 nm to 690 nm, corresponding to bandgap energy of 1.8-2.3 eV. These series of photocatalysts possess appropriate band gap (ca. 1.8-2.3 eV) and chemical level to use solar energy to decompose water into H2, and the photocatalytical activities under visible light (λ > 420 nm) demonstrated that the activities decreased correspondingly with the increase of the amount of Nb in these compounds, which is regarded as the result of the differences of their band structures. Furthermore, the photocatalytical activities and the photophysical properties of these visible light-driven photocatalysts K4Ce2Ta10−xNbxO30 (x = 0-10) were bridged by the first principle calculation based on Density Functional Theory with General Gradient Approximation and Plane-wave Pseudopotential methods.  相似文献   

8.
The Gd2(TixZr1 − x)2O7 (x = 0, 0.25, 0.50, 0.75, 1.00) ceramics were synthesized by solid state reaction at 1650 °C for 10 h in air. The relative density and structure of Gd2(TixZr1 − x)2O7 were analyzed by the Archimedes method and X-ray diffraction. The thermal diffusivity of Gd2(TixZr1 − x)2O7 from room temperature to 1400 °C was measured by a laser-flash method. The Gd2Zr2O7 has a defect fluorite-type structure; however, Gd2(TixZr1 − x)2O7 (0.25 ≤ x ≤ 1.00) compositions exhibit an ordered pyrochlore-type structure. Gd2Zr2O7 and Gd2Ti2O7 are infinitely soluable. The thermal conductivity of Gd2(TixZr1 − x)2O7 increases with increasing Ti content under identical temperature conditions. The thermal conductivity of Gd2(TixZr1 − x)2O7 first decreases gradually with the increase of temperature below 1000 °C and then increases slightly above 1000 °C. The thermal conductivity of Gd2(TixZr1 − x)2O7 is within the range of 1.33 to 2.86 W m− 1 K− 1 from room temperature to 1400 °C.  相似文献   

9.
Imre Kovács  János Kiss 《Vacuum》2007,82(2):182-185
The formation of PdZnx alloy on Pd(1 0 0) and its characteristics were investigated by various methods, such as photoelectron, auger-electron, electron energy loss, thermal desorption spectroscopic methods and work-function measurement. The alloy was produced by the decomposition of diethyl zinc on Pd(1 0 0). The alloy surface reacts with O2 and ZnOx is formed. The reactivity of alloy to hydrogen is similar to that of K/Pd. The stability of adsorbed CO is lower than on clean Pd(1 0 0).  相似文献   

10.
Cu, Pd and Au metal adatom adsorption on different adsorption sites of graphene analog h-BN monolayer is presented. The results demonstrate that the atop N (AN) being the most favorable site for Cu while atop B (AB) for Pd/Au; as well as occurrence of chemisorption is also found in these sites. A general model has been proposed which essentially indicate electronegativity (χ) to be the governing reason regarding the choice of adsorption sites on h-BN sheet in a way such that the adatoms with χ < 2.04 are the most stable on AN site while adatoms with χ lying in the range 2.04-3.04 are the most stable on AB site. A detail study regarding magnetic properties reveal 100% spin polarization at Fermi level i.e. half metallic characteristics and 1μB/supercell magnetic moment in case of Cu and Au adatom adsorption at the most favorable sites. For Cu adsorbed h-BN system, the half metallic characteristics and strong chemical bonds arise from good hybridization at 0 eV between the outermost 2p orbital of nitrogen and the outermost 4s orbital of copper and at −1.49 eV between Cu 3d and 4s orbital with N 2p orbital. A thorough optical study on the above mentioned systems exhibits evolution/disappearance of different hump/shoulder peaks in the calculated absorption coefficient vs. energy plot which may be useful for experimental identification of the adsorbed systems.  相似文献   

11.
R. Knizikevi?ius 《Vacuum》2009,83(6):953-189
Chemical etching of Si and SiO2 in SF6 + O2 plasma is considered. The concentrations of plasma components are calculated using values extrapolated from experimental data. Resulting calculations of plasma components are used for the calculation of Si and SiO2 etching rates. It is found that the reaction constants for reactions of F atoms with Si atoms and SiO2 molecules are equal to (3.5 ± 0.1) × 10−2 and (3.0 ± 0.1) × 10−4, respectively. The influence of O2 addition to SF6 plasma on the etching rate of Si is quantified.  相似文献   

12.
In this paper, we present a simple microwave-assisted synthesis of Zn1  xCoxO nanopowders. With the advantages of the microwave-assisted method, we have successfully synthesized good crystalline quality and good surface morphology Zn1  xCoxO nanopowders. The nanopowders are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-VIS absorption, and micro-Raman spectroscopy. We found, in the synthesis process, the surfactant Triethanolamine (TEA) plays an important role on the morphology of Zn1  xCoxO nanoparticles. The XRD study shows that for Co doping up to 5%, Co2+ ions are successfully incorporated into the ZnO host matrix. The absorption spectra of Zn1  xCoxO (x = 1-5%) nanopowders show several peaks at 660, 611 and 565 nm, indicating the presence of Co2+ ions in the tetrahedral sites. The Raman study shows that the linewidth of E2low mode increases with Co concentration, which further indicates the incorporation of Co2+ ions into the ZnO host matrix.  相似文献   

13.
Takahiro Itoh 《Vacuum》2007,81(9):1068-1076
The growth process of CuO and Cu2O thin films on MgO(0 0 1) substrates by reactive dc-magnetron sputtering was studied by reflection high-energy electron diffraction (RHEED) and atomic-force microscopy (AFM). The RHEED pattern and AFM image showed that (1) three-dimensional Cu(0 0 1) islands grew on MgO under the nonreactive sputtering condition, (2) CuO(1 1 1) was deposited layer by layer on MgO at 400 °C under the reactive sputtering condition, and (3) the film deposited at 600 °C in the initial growth stage was composed of three-dimensional Cu islands because O2 gas could not be incorporated into them due to the low sticking coefficient of O2 on MgO under the reactive sputtering condition. The layer-by-layer CuO(1 1 1) thin-film growth process is discussed from the viewpoint that Cu and oxygen species are supplied in stoichiometry onto the MgO substrate to form CuO thin-film crystals while maintaining minimum interfacial energy between CuO and MgO.  相似文献   

14.
A Kutana  T Ito  B Makarenko 《Vacuum》2004,73(1):73-78
The kinetics of atomic hydrogen isothermal adsorption and desorption on a Si(1 0 0) surface was studied using the time-of-flight scattering and recoiling spectrometry technique at temperatures below and above the thermal desorption threshold. A continuous decrease in saturation coverage with temperature under constant atomic hydrogen exposure has been observed in both regions for temperatures in the range 325-820 K. For TS=500-650 K, the decrease is described by a kinetic model where Eley-Rideal (ER) abstraction is responsible for hydrogen removal from the surface and hydrogen coverage depends on the temperature due to the changing rate of migration from precursor to primary monohydride sites. For TS=650 K and higher, in addition to the ER abstraction, the thermal desorption from primary monohydride sites leads to a further decrease of the saturation coverage. The first-order desorption rates after source shut-off have been measured and an activation barrier of 1.89 eV has been obtained.  相似文献   

15.
The spherical particles CdSexS1 − x with 30-80 nm in radius have been successfully prepared by the hydrothermal reaction at 200 °C. The structure characterization which has been carried out using X-ray diffraction (XRD) shows hexagonal crystal structure. Novel properties have been observed via UV-visual absorption spectra and photoluminescence (PL) spectra. The absorption shoulder and the luminescence emission peaks have been tuned by changing the mole ratio of Se in the CdSexS1 − x samples.  相似文献   

16.
Crystallization behavior of (30−x)K2O-xNa2O-25Nb2O5-45SiO2 (KNNS; x = 0, 5, 10, 20 and 30) (mol%) glasses was clarified and perovskite-type nonlinear optical (K, Na)NbO3 (KNN) crystals were synthesized by using a conventional glass-ceramics method. It was found that Na2O amounts over around x = 10 mol% were necessary to form perovskite-type KNN crystals showing second-harmonic generations. The substitution of K+ and Na+ ions was confirmed from X-ray diffraction (XRD) analysis. A continues-wave of Yb:YVO4 fiber laser (wavelength: 1080 nm) was irradiated onto CuO doped KNNS; x = 10 (Cu-KNNS) surface. The absorption coefficient of this Cu-KNNS glass was determined to be α = 5.0 cm−1. Perovskite-type KNN crystals were patterned in the condition of the laser power of >1.20 W and the laser scanning speed of = 7 μm/s, and their structure was determined by Raman scattering spectra and XRD analysis.  相似文献   

17.
Takahiro Itoh 《Vacuum》2007,81(7):904-910
Copper oxide films deposited on MgO(0 0 1) substrates by reactive magnetron sputtering under the metal-mode condition were studied by X-ray diffraction (XRD) and reflection high-energy electron diffraction (RHEED) analyses for structural analysis, and X-ray-excited Auger electron spectroscopy (XAES) for chemical bonding analysis. CuO(1 1 1) thin films grew from their initial growth stage maintaining the same crystallinity on MgO(0 0 1) substrates at 400°C. When the substrate temperature was increased to 600 °C, the as-sputtered films comprise Cu(0 0 1), amorphous Cu2O phase, and Cu2O(0 0 1) phase. The Cu(0 0 1) phase was observed at initial growth stage. This is probably because O2 gas molecules could not sufficiently stick to the MgO substrate at 600 °C. Single phase of Cu2O(0 0 1) was obtained by the cooling of the as-sputtered films in O2 atmosphere. The growth of single phase Cu2O(0 0 1) is considered as a solid-phase heteroepitaxial growth on MgO(0 0 1) surface, which was caused by incorporating O2 gas into the as-sputtered films.  相似文献   

18.
Y.L. Zhu  S.J. Zheng  D. Chen  X.L. Ma 《Thin solid films》2010,518(14):3669-3673
Microstructural properties are found to be variant in the BaTiO3 − x films grown on SrTiO3(001) substrate under various oxygen pressures from 2 × 10− 2 Pa to 2 × 10− 5 Pa by laser molecular-beam epitaxy. Transmission electron microscopic studies reveal that the predominant defects in the films change from threading dislocations into (111) planar defects (i.e. stacking faults and nanotwins) by lowering the oxygen pressure. High density of these defects was observed in the BaTiO3 − x film prepared at the oxygen pressure of 2 × 10− 5 Pa, which shows metallic behavior. The relationships between oxygen pressure, microstructure, and electrical properties are established on the basis of oxygen deficiency. The formation of nanotwins in highly oxygen-deficient BaTiO3 − x epitaxial thin films results from accommodating excess oxygen vacancies induced by lowering oxygen pressure.  相似文献   

19.
Ionization energies of non-stoichiometric LinFn−1 (n = 3, 4, 6) clusters determined by a thermal ionization mass spectrometry (TIMS) were 4.2 ± 0.2 eV for Li3F2, 4.3 ± 0.2 eV for Li4F3 and 4.1 ± 0.2 eV for Li6F5. The ionization energy of Li6F5 cluster was obtained experimentally for the first time. The ionization energies of Li3F2 and Li4F3 are in correlation with the results obtained by photoionization time-of-flight mass spectrometry. The determined ionization energies are comparable with theoretical ionization energies calculated by ab initio method. The theoretical predictions supported that the most stable isomers of a non-stoichiometric cluster LinFn−1 (n = 3 and n = 4) in which the excess electron localizes on a specific site have a “segregated” electronic structure composed of the metallic part and ionic part.  相似文献   

20.
In this work, a possible way to enhance the epitaxial growth of metastable, tensile strained SixC1  x layers by the addition of germanium is demonstrated. During ultra-high vacuum chemical vapor deposition growth, the co-mixing of germane to the SixC1  x precursors was found to enhance the growth rate by a factor of ~ 3 compared to the growth of pure SixC1  x. Furthermore, an increase of the amount of substitutional incorporated carbon has been observed. Selective SixGeyC1  x − y deposition processes utilizing a cyclic deposition were developed to integrate epitaxial tensile strained layers into source and drain areas of n-channel transistors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号