首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermally activated Ti-Zr-V non-evaporable getter (NEG) film has been studied by means of X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). Depth profiling technique has been used to establish the location of different components in the near-surface region. It was found that the top surface layer of the activated Ti-Zr-V NEG film is zirconium and titanium enriched. Residual oxide observed even on fully activated NEG surface consists mostly of zirconium and titanium low valence suboxides that are located mainly in the top surface layer. Carbides formed during the activation process remain on the surface and their concentration drops strongly with depth.  相似文献   

2.
采用真空反应法在硅基上制备出了GaN外延层。利用二次离子质谱和X射线光电子能谱对GaN外延层进行了深度剖析和表面分析。结果表明 ,外延层中Ga和N分布均匀 ;在表面处Ga发生了偏聚 ;外延层中还存在Si,O等杂质 ,但这些并未影响到GaN外延层的物相及发光性能。实验还表明 ,在外延生长前采用原位清洗可去除Si衬底表面的氧  相似文献   

3.
AlN陶瓷衬底的SIMS和XRD测量   总被引:1,自引:0,他引:1  
AlN陶瓷中成分与杂质对于AlN的性能具有决定性作用。用二次离子质谱(SIMS)和X射线衍射(XRD)对清华大学材料系电子封装用的AlN陶瓷进行了研究。SIMS谱表明AlN衬底中除Al,N以外还有C,O,Si,Ca,Y等元素,其中有些是表面污染。衬底的SIMS深度分析表明样品O,Ca,Y信号都很强,且分布均匀,说明样品中含有Y2O3,CaO添加剂。AlN样品的XRD谱与AlN的JCPDS卡片对照,在测量范围内卡片上所有峰均出现,且晶面间距符合很好。在XRD谱上找到了与Y2O3和CaO对应的衍射峰。  相似文献   

4.
Aluminum-doped zinc oxide transparent conducting films are prepared by spray pyrolysis at different dopant concentrations. These films are subsequently characterized by X-ray diffractometric and X-ray photoelectron spectroscopic (XPS) techniques. The results are compared with those obtained from pure zinc oxide films prepared under identical conditions. X-ray diffraction measurements show an increase in lattice parameters (c and a) for aluminum-doped films while their ratio remains the same. This study also indicates that within the XPS detection limit the films are chemically identical to pure zinc oxide. However, a difference in the core-electron line shape of the Zn 2p3/2 photoelectron peaks is predicted. An asymmetry in Zn 2p3/2 photoelectron peaks has been observed for aluminium-doped films. The asymmetry parameters evaluated from core-electron line-shape analysis yield a value of the order of 0.04±0.01. The value is found to lie between those obtained for pure zinc oxide and has been attributed to the presence of excess zinc in the films.  相似文献   

5.
This work describes doped-channel field-effect transistors (DCFETs), featuring both low-high doped-channels and double AlAs etch-stop layers used in a selective etch recessed-gate process. A developed highly selective wet etching process is applied as a gate-recess technique to fabricate DCFETs. Selective wet etching using citric acid/H2O2/NH4OH/H2O solutions in conjunction with double thin AlAs etch-stop layers is a reasonably simple, safe, and reliable process for gate recessing in the fabrication of the DCFETs herein. Surface passivation using P2S5/(NH4)2Sx+ Se on GaAs Schottky barrier diodes, formed by Pt/Au contacts, is examined for the first time and the results are compared with those of unpassivated devices. For the passivated Pt/Au gate device, the two-terminal gate-drain breakdown (source floating) at − 1 mA/mm is 17 V, and the device provides an excellent combination of transconductance and output current. The X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and photoluminescence results are highly consistent with the Schottky barrier measurements and the device performance.  相似文献   

6.
The adsorption and decomposition of 1,3-disilabutane (DSB) was studied on Si (111)-7×7 in the temperature range 100-1200 K by Cs+ reactive ion scattering and X-ray photoelectron spectroscopy (XPS). By combining the results of these two techniques, adspecies in the intermediate states during the decomposition of DSB were qualitatively identified and an adsorption model was proposed. At 100-150 K, DSB was found to adsorb on the surface as the C2H8Si2 species as well as CH4Si and to condense molecularly on a monolayer of C2H8Si2 adspecies. XPS indicates that the molecular species desorbs mostly at 200 K and completely at 300 K. Up to 600 K, the C2H8Si2 adspecies are converted to CH4Si with increasing temperature and then above this temperature the CH4Si species decomposes to form the SiC film. The intensity variations of Si (2p) and total C (1s) peaks and the analysis by curve fitting of the C (1s) peaks suggest that one CH4Si species leaves the system by cleavage of C-Si bonds in C2H8Si2 adspecies rather than to form two CH4Si adspecies, and the breakage probably occurs within the extremity ones in accordance with the double-bonded chemisorption character.  相似文献   

7.
The presence of nitrogen in the dielectric films is known to impart highly desirable properties in the ultra-large-scale-integration era; the position, amount and concentration profiles of nitrogen are of great interest. In this work, we have studied two-step processes leading to bimodal nitrogen concentration profiles, with one nitrogen peak near the Si/dielectric interface and the other at the dielectric surface. Secondary Ion Mass Spectroscopy and Angled Resolved X-Ray Photoelectron Spectroscopy studies suggest that an ammonia nitridation step (at 1000 °C and 1 atm) following silicon oxynitridation in N2O (or possibly following oxidation in O2) at the same conditions results in a bimodal nitrogen profile when short nitridation times are used; increasing the duration of the nitridation step is found to completely nitridate the initially grown oxynitride (or oxide). Post nitridation of NO-grown oxynitrides that are not found to result in bimodal N concentration profiles at the conditions studied. The experimental findings are in agreement with theoretical predictions of preliminary modeling studies. The engineering of desired bimodal nitrogen concentration profiles in nano-dielectric materials of interest becomes, therefore, possible through two-step processes.  相似文献   

8.
We have investigated structural and surface property of transparent conductive Nb-doped titanium oxides (TNO) thin film with high conductivity of 10−4 Ω cm order which were made by RF-magnetron sputtering at high deposition rates followed by an annealing in vacuum. The grain sizes of TNO evaluated by atomic force microscope were found to become larger by annealing at temperature higher than 500 °C. The measured work functions of the TNO films using ultra-violet light photoelectron spectroscopy were 5.02-5.47 eV, and depended on TNO grain size and on the amount of surface weakly bound oxygen that was estimated from peak area intensities of O(1 s) X-ray photoelectron spectra.  相似文献   

9.
We have studied the surface termination of ZnO(0001¯) films grown on Al2O3 substrates with high epitaxial quality. The structural properties of the ZnO films were investigated by X-ray scattering, revealing a predominant (0001¯)ZnO out-of-plane texture with the [112¯0]ZnO[0001]Al2O3 and [112¯0]ZnO[101¯0]Al2O3 azimuthal orientations for (112¯0)Al2O3 and(0001)Al2O3 substrates, respectively. The surface termination was determined by X-ray photoemission spectroscopy (XPS) via pyridine (C5H5N) adsorption at the ZnO surface. XPS data recorded at different temperatures after exposure to pyridine revealed that for both orientations of the Al2O3 substrates the deposited ZnO films were terminated by oxygen atoms, i.e. corresponding to a ZnO (0001¯) surface.  相似文献   

10.
SIMS and GDMS depth profile analysis of hard coatings   总被引:1,自引:0,他引:1  
Rapid development in hard coating technology calls for simple construction depth profile analysers. Here we present results of depth profile analysis of a set of Ar arc plasma deposited TiN, CrN layers. The results are obtained with the use of recently constructed simple glow discharge mass spectrometer (GDMS) and compared with secondary ion mass spectrometer (SIMS). In SIMS (SAJW-05 model) we apply 5 keV Ar+ ion beam of about 100 μm in diameter. Digitally controlled spiral scanning of primary ion beam is performed over 1.6 mm2 area. Secondary ions are extracted from the central part due to an “electronic gate” and analysed by quadrupole mass spectrometer QMA-410 Balzers (16 mm rods).GDMS analyses are performed on SMWJ-01 glow discharge prototype spectrometer. To supply discharge in 1 hPa argon we use 1.5 kV DC voltage. The analysed sample works as a cathode in a discharge cell. Area of the analysis is ∼4 mm2 due to the use of secondary cathode—high purity tantalum diaphragm. Sputtered atoms are ionised, next extracted into the analytical chamber and finally analysed by the quadrupole mass analyser SRS-200 (6 mm rods).The results show that the use of simple construction GDMS analyser allows obtaining similar or even slightly better depth resolution than it can be obtained in the SIMS spectrometer. Application of glow discharge analysis opens new possibilities in direct quantitative depth profile analysis of hard coatings.  相似文献   

11.
用X射线光电子谱研究了GCr15轴承钢不平衡磁控溅射沉积Ti,继之等离子体基离子注入碳的等离子体基离子注入混合层的C ,Ti浓度深度分布及其化学结构。表明混合层的最表层为碳沉积层 ,其C 1s谱峰呈类金刚石特征 ,喇曼光谱肯定了这一特征。碳沉积层下面为C Ti混合区 ,Ti和C各以游离态和化合物态存在。混合层内Ti和C浓度沿层深连续变化 ,无突变区 ,在原Ti沉积层与基材轴承钢发生反冲增强扩散现象  相似文献   

12.
M.J. Chuang  C.H. Wen 《Thin solid films》2010,518(8):2290-1248
Structures and surface chemical composition of indium tin oxide (ITO) thin films prepared by long-throw radio-frequency magnetron sputtering technique have been investigated. The ITO films were deposited on glass substrates using a 20 cm target-to-substrate distance in a pure argon sputtering environment. X-ray diffraction results showed that an increase in substrate temperature resulted in ITO structure evolution from amorphous to polycrystalline. Field-emission scanning electron microscopy micrographs suggested that the ITO films were free of bombardment of energetic particles since the microstructures of the films exhibited a smaller grain size and no sub-grain boundary could be observed. The surface composition of the ITO films was characterized by X-ray photoelectron spectroscopy (XPS). Oxygen atoms in both amorphous and crystalline ITO structures were observed from O 1 s XPS spectra. However, the peak of the oxygen atoms in amorphous ITO phase could only be found in samples prepared at low substrate temperatures. Its relative peak area decreased drastically when substrate temperatures were larger than 200 °C. In addition, a composition analysis from the XPS results revealed that the films deposited at low substrate temperatures contained high concentration of oxygen at the film surfaces. The oxygen-rich surfaces can be attributed to hydrolysis reactions of indium oxides, especially when large amount of the amorphous ITO were developed near the film surfaces.  相似文献   

13.
J.Y. Wang  U. Starke 《Thin solid films》2009,517(11):3402-112
Concentration-depth profiles of sputter-deposited Si/Al multilayered specimens were determined by model fitting to measured data obtained by depth profiling, using Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary-ion mass spectrometry (TOF-SIMS). The model used for calculation of the concentration-depth profile accounts for the broadening (“smearing”) upon experimental depth profiling owing to the effects of atomic mixing, preferential sputtering, surface roughness and information depth of either the Auger electrons (for AES depth profiling) or the photoelectrons (for XPS depth profiling) or the secondary ions (for SIMS depth profiling). The depth resolution for each technique was derived directly from the values determined for the fitting parameters in the model.  相似文献   

14.
Self-assembled nanostructures on a periodic template are fundamentally and technologically important as they put forward the possibility to fabricate and pattern micro/nano-electronics for sensors, ultra high-density memories and nanocatalysts. Alkali-metal (AM) nanostructure grown on a semiconductor surface has received considerable attention because of their simple hydrogen like electronic structure. However, little efforts have been made to understand the fundamental aspects of the growth mechanism of self-assembled nanostructures of AM on semiconductor surfaces. In this paper, we report organized investigation of kinetically controlled room-temperature (RT) adsorption/desorption of sodium (Na) metal atoms on clean reconstructed Si (111)-7 × 7 surface, by X-ray photoelectron spectroscopy (XPS). The RT uptake curve shows a layer-by-layer growth (Frank-vander Merve growth) mode of Na on Si (111)-7 × 7 surfaces and a shift is observed in the binding energy position of Na (1s) spectra. The thermal stability of the Na/Si (111) system was inspected by annealing the system to higher substrate temperatures. Within a temperature range from RT to 350 °C, the temperature induced mobility to the excess Na atoms sitting on top of the bilayer, allowing to arrange themselves. Na atoms desorbed over a wide temperature range of 370 °C, before depleting the Si (111) surface at temperature 720 °C. The acquired valence-band (VB) spectra during Na growth revealed the development of new electronic-states near the Fermi level and desorption leads the termination of these. For Na adsorption up to 2 monolayers, decrease in work function (−1.35 eV) was observed, whereas work function of the system monotonically increases with Na desorption from the Si surface as observed by other studies also. This kinetic and thermodynamic study of Na adsorbed Si (111)-7 × 7 system can be utilized in fabrication of sensors used in night vision devices.  相似文献   

15.
In this paper, we have studied the tin oxide films deposition by DC magnetron reactive sputtering. We have investigated the discharge parameters such as discharge voltage and deposition rate and the discharge composition as a function of the input oxygen partial pressure. We have compared these results with the deposited films stoichiometry. In the constant current discharge mode, we observe, with increasing oxygen partial pressure, a decrease of the discharge voltage followed by a slight increase, and a drop of the deposition rate. For each experimental conditions, we measure the gas composition by mass spectrometry (glow discharge mass spectrometry mode and residual gas analysis mode (RGA)) and the deposited films stoichiometry by X-ray photoemission spectroscopy. The results are fitted by means of a model, taking into account the plasma-surface interactions. All the data are fitted by the same equation, with only four fitting parameters, namely the sticking-reaction coefficients of O and O2 on Sn and SnO surfaces. Our results show that the main reaction is the reaction between the atomic oxygen and the metallic part (Sn) of the substrate. This reaction is characterized by a sticking coefficient value (α10) of 0.96.  相似文献   

16.
崔国栋  杨川  高国庆 《功能材料》2005,36(5):783-785
利用二极溅射的方法在不同衬底上沉积了Fe N O薄膜。通过扫描电子显微镜(SEM)、光电子能谱(XPS)和透射电子显微镜(TEM)等先进实验分析手段对二极溅射沉积Fe N O薄膜的形貌与结构进行了分析。XPS和TEM的结果表明,薄膜的主要成分为FeO和少量的Fe16N2多晶体组成,生长上存在择优取向;表面均匀、致密、平整,晶粒大小在50nm左右。  相似文献   

17.
The initial stages of metal-organic chemical-vapor deposition of ZrO2 on a model FeCrAl alloy was investigated using synchrotron radiation photoelectron spectroscopy, X-ray absorption spectroscopy, scanning Auger microprobe, and time of flight secondary mass spectrometry. The coatings were grown in ultra-high vacuum at 400 °C and 800 °C using the single source precursor zirconium tetra-tert-butoxide. At 400 °C the coatings mainly consist of tetragonal ZrO2 and at 800 °C a mixed ZrO2/Al2O3 layer is formed. The Al metal diffuses from the FeCrAl bulk to the metal/coating interface at 400 °C and to the surface of the coating at 800 °C. The result indicates that the reaction mechanism of the growth process is different at the two investigated temperatures.  相似文献   

18.
Cu(In,Ga)Se2 (CIGS) based-photovoltaic (PV) cells with different diffusion barriers of SiOx and i-ZnO were fabricated on stainless steel (STS) substrate and their electrical characteristics were investigated by measuring JV curves under illuminated and dark conditions. The physical properties of the CIGS film depending on type of diffusion barrier were also analyzed using X-ray diffraction and secondary ion mass spectroscopy. The efficiency of the CIGS-PV cell with i-ZnO barrier was approximately 2% higher than that with the SiOx barrier. Through the analysis of dark JV curves, we discovered that distinctive defects were formed in the band gap of CIGS based on which diffusion barrier contacted the STS. The diffraction pattern showed a slightly different tendency of the peak intensity ratio of (220/204)/(112) in the PV cell with the i-ZnO barrier, which was slightly higher than that in the PV cell with SiOx barrier. In elemental depth profile, a deficient Ga profile was observed near the surface of the CIGS film with the SiOx barrier, and an abundant Na profile within the CIGS film with the i-ZnO barrier was detected. This is attributed to a difference in thermal conduction through the diffusion barriers during CIGS film growth, originating from the larger thermal conductivity of ZnO compared with SiOx.  相似文献   

19.
Shuxiang Mu 《Thin solid films》2010,518(15):4175-4182
Polyimide (PI) films with thin cobalt oxide (Co3O4) layers on both film sides have been prepared via a surface modification and ion-exchange technique. The method works by hydrolyzing the PI film surfaces in aqueous potassium hydroxide solution and incorporating Co2+ into the hydrolyzed layers of PI film via subsequent ion exchange, and followed by thermal treatment in ambient atmosphere. The PI composite films were characterized by Attenuated total reflection-Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffractions, scanning electron microscopy, transmission electron microscopy and thermogravimetric analyses, as well as surface resistance and mechanical measurements. By varying the absorbed cobalt ion content, a series of PI/Co3O4 composite films with insulative to semiconductive surfaces were obtained. The room temperature surface resistances of the semiconductive composite films reached to about 107 Ω. The Co3O4 particle formed on PI film surfaces was in the range of 10-40 nm. The final composite films maintained the essential mechanical properties and thermal stability of the pristine PI films. The adhesion between surface Co3O4 layers and PI matrix was acceptable.  相似文献   

20.
Zhen Zhang 《Thin solid films》2008,516(12):3741-3746
Ultrathin silica films with different thicknesses have been grown on a Pd(100) surface by depositing silicon in the presence of O2. The film composition and electronic properties were characterized by X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and high-resolution electron energy loss spectroscopy (HREELS). Scanning tunneling microscopy was applied to investigate the film morphology and lattice structure. The results show that the obtained films are atomically flat and highly ordered in a long range. UPS and HREELS measurements indicate that the silica film has the same electronic and vibrational properties as bulk silica. A 2.8 nm thick film exhibits low defects in the film and high thermal stability up to 800 K, as evidenced by ion scattering spectroscopy and XPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号