首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
采用分子动力学方法模拟不同能量的C+离子与聚变材料钨的相互作用.模拟结果表明:当C+离子入射剂量为3.11×1016 cm-2,入射能量为50eV时,样品表面形成一层碳膜;而入射离子能量为150和250eV时,C+离子入射到样品内与钨原子共同形成碳钨混合层,样品表面没有形成碳膜;碳的沉积率随能量的增大先减小后增加,溅射率随能量的增大先增大后减小;轰击后的样品中,碳原子密度、C-W键密度及C-C键密度分布都随能量的增加逐渐向样品内移动,且C-W键分布厚度随能量的增加而逐渐增加,C-C键分布厚度几乎不随能量变化;在作用过程中极少量的钨原子发生溅射,但引起钨品格损伤严重;碳在轰击后的样品中主要以Csp3杂化形式存在.  相似文献   

2.
本文使用分子动力学方法模拟低能CH与碳氢薄膜的相互作用,以探讨在核聚变过程中CH的再沉积行为及对面向等离子体材料性质变化的影响。选择的入射能量分别为0.3,1,5,10 eV。模拟结果表明随着入射能量的增加C原子与H原子的吸附率增加,且在入射能量大于CH离解能的情况下,同一能量下H原子的吸附率小于C原子的吸附率。随着入射能量的增加,薄膜的厚度增加,薄膜中含有Csp2的范围变宽,并且表面逐渐转变为Csp2表面。薄膜中的C主要以Csp3形式存在,其次是Csp2,几乎不含Csp1。通过统计薄膜中的CHx(x为1~4)发现CH占优势,其次是CH2,而CH4的量非常少。  相似文献   

3.
采用分子动力学方法模拟了F原子与Si表面相互作用,F原子入射能量分别为0.3,1,3,5,7和9 eV。在模拟过程中,F原子的沉积率与Si表面悬键密度有关,而Si原子的刻蚀率与表面晶格结构破坏程度有关,随着Si原子刻蚀率的增加,样品高度降低。在不同能量F原子作用下,样品Si表面形成Si-F反应层。Si-F反应层的厚度随入射能量的增加而增加,其组成成分对产物有至关重要的影响。  相似文献   

4.
采用分子动力学模拟方法研究了入射能量对SiF2与SiC样品表面相互作用的影响。本次模拟选择的入射初始能量分别为0.3,1,5,10和25 eV。模拟结果显示SiF2分解率与Si和F原子的沉积率有密切的关系。沉积的Si和F原子在SiC表面形成一层SixFy薄膜。随入射能量的增加,薄膜厚度先增加后减小,薄膜中Si-Si键密度增大。构成薄膜的主要成分SiFx(x=1~4)中主要是SiF和SiF2,随入射能量的增加,薄膜成分由SiF2向SiF转变。  相似文献   

5.
借助基于有限元原理的COMSOL软件和分子动力学模拟原理的Reax FF软件对化学气相沉积技术制备SiC涂层的反应特性及沉积过程进行模拟研究,为高温抗氧化复合涂层体系中SiC中间层的工艺优化及制备提供理论支持。结果表明,化学气相沉积SiC涂层过程包括前驱体三氯甲基硅烷(CH3SiCl3)的扩散过程和热解反应过程,SiC涂层在扩散过程不会生长,仅从10-4 s后的热解反应过程开始生长,沉积生长过程同时伴随涂层的解离。随着入射粒子能量的增大,单位时间内沉积到基底表面的Si和C粒子数不断增加。提高粒子入射能量有利于提高SiC涂层的致密度,当入射粒子能量大于2 eV时可以实现SiC涂层的均匀生长,而当入射能量高于6 eV时,解离的Si和C粒子数量增大,不利于SiC涂层的生长。综合而言,当入射能量为3 eV时,化学气相沉积的SiC涂层综合性能最佳。  相似文献   

6.
使用分子动力学方法模拟了低能H原子与碳氢薄膜的作用过程,以了解基于核聚变装置中等离子体与C基材料的相互作用机制。模拟中使用REBO(reactive empirical bond order)势函数来描述C-H体系中原子间的相互作用,并使用Berendsen热浴来控制体系的温度。文中着重探讨了入射能量对低能H原子刻蚀碳氢薄膜的影响,入射能量分别为0.3,1,5和10eV。模拟结果显示随着入射能量的增加,H原子的吸附率增加,C原子和H原子的刻蚀率增加。同一能量下H原子比C原子更易发生刻蚀。通过讨论发现在H原子与碳氢薄膜作用过程中,当能量大于1 eV时,由于入射的H原子先沉积在表面并与表面原子发生反应形成碳氢化合物,然后在后续入射粒子的轰击下碳氢化合物在表面发生解吸附现象,从而导致了C原子的刻蚀,因此C原子的刻蚀发生主要是化学增强的物理溅射。  相似文献   

7.
为了从微观领域研究金属薄膜缺陷的形成和薄膜的初期生长模式,利用有限元法对金属薄膜沉积过程中的缺陷和生长模式进行了计算机模拟.以Pt原子为膜料粒子,采用刚性球入射到石墨基底,重点研究了在基底上形成的缺陷结果表明,在薄膜生长初期会形成"树桩"小岛,而当碳基底上沉积铂原子的能量值达到75 eV时,就有可能发生随机原子注入."树桩"小岛的形成使薄膜生长多为岛状生长机制,同时检验了有限元方法在微观领域中的合理性和适用性.  相似文献   

8.
利用PHI-550型多功能电子谱仪研究了Cu-Be合金活化后的CuBe(O)样品。结果表明:(1)Cu-Be合金活化后,表面生成较为纯净的BeO层。氧化使得ESCA Be 1 S峰由111.6eV(电子结合能)移至113.6eV,使得Be KLL Auger峰由104eV(电子动能)移至约93eV;(2)Cu、Be组分在活化过程中均通过初始界面向外迁移,但二者机制有别;(3)BeO膜在电子束轰击下有解离发生。此外,利用不同能量电子的逃逸深度差,测算出800℃活化样品的BeO膜厚度约为24(?)。  相似文献   

9.
本文基于蒙特卡罗方法,并结合SRIM软件,编制程序跟踪模拟了磁控溅射各物理过程的粒子状态.以铝靶材为例,得到了粒子在磁控溅射各物理过程的状态分布,讨论了工作参数对薄膜沉积过程的影响.模拟结果表明:溅射原子的能量主要分布在20 eV以下,当原子沉积到基片表面时,其能量主要分布在15 eV以下,但有两个分布峰值,两个分布峰值对应着快慢两种不同形式的沉积过程.原子沉积到基片 表面的位置大致服从正态分布,气压p和靶基距离d影响正态分布的方差,也即影响沉积原子在基片表 面分布的均匀性.功率与沉积速度呈良好的线性关系,在工作气压为1 Pa,靶基距离为60mm的条件下,当入射粒子的能量为250 eV时,模拟得到的功率效率最大.  相似文献   

10.
基于“亲水层-疏水层-亲水层”模型,采用Monte Carlo方法模拟了低能电子束(能量E0≤900 eV)作用下,磷脂酰乙醇胺(PE)双分子层膜的电子散射,研究了PE膜散射电子(SEs)、背散射电子(BSEs)的深度与表面分布,BSEs、透射电子(TEs)的能量分布,以及SEs的能量沉积.研究表明,入射电子束能量E0越小,PE膜的TEs就越少,BSEs就越多,被PE膜吸收的电子就越多,BSEs图像的分辨率就越高;入射电子束能量E0越小,PE膜能量接近E0的BSEs就越多,能量接近E0的TEs就越少;PE膜亲水层的背散射能力明显高于疏水层;随着E0的增大,SEs在PE膜中的能量沉积密度增大,但沉积范围先增大,后减小.  相似文献   

11.
为研究高能粒子辐照条件下钙钛锆石的微观损伤机制,利用蒙特卡罗SRIM软件包模拟α粒子和Kr~+离子在100~3 000keV入射能量范围内,钙钛锆石的阻止本领、能量损失、平均投影射程、空位分布和临界非晶注入剂量dpa值。结果表明,当不同能量的α粒子轰击时,入射离子射程为437~6 960nm,形成的空位总数为12~20个,钙钛锆石以电子阻止本领为主,能量主要以电离能损的方式损耗;当不同能量的Kr~+离子轰击时,入射离子射程为39~1 130nm,形成空位总数为138~1 097个,随着入射粒子能量的增加核阻止本领逐渐减小,电子阻止本领逐渐增加,能量主要以入射离子电离能损、反冲离子电离能损和反冲离子声子能损的方式损耗;在临界非晶注入剂量下,1 000keV的Kr~+离子所产生的峰值dpa深度小,1 500keV的Kr~+离子所产生的峰值dpa深度大。  相似文献   

12.
采用分子动力学模拟方法研究了300K入射能量150eV时,以不同角度(5°、30°、60°和75°)入射的SiF3+与SiC表面的相互作用过程。模拟中使用了用于Si-F-C体系的Tersoff-Brenner势能函数。模拟结果显示,入射SiF3+与SiC表面相互作用后会分解,分解率随着入射角度的增加而减小。分解产物除少量散射外,大部分会沉积在SiC表面,Si和F在SiC表面的平均饱和沉积量随入射角度的增加而减少。随着SiF3+不断轰击SiC表面,SiC表面会形成Si-F-C反应层,且反应层厚度随着入射角度的增加而减少。同时发现SiC中的Si原子较C原子更容易被刻蚀,与实验结果一致。当刻蚀达到稳定,入射角度为5°、30°、60°和75°时,C的刻蚀率分别约为0.026、0.038、0.018、0.005,Si的刻蚀率分别约为0.043、0.051、0.043和0.023。各入射角度下,产物分子种类主要为F、SiF和SiF2。F和SiF产物量随入射角度增加而增加,而SiF2产量随入射角度增加而减少。在入射角度等于5°和30°时,SixFyCz是主要的含C产物;而在入射角度等于60°和75°时,CF是主要的含C产物。在入射角度等于5°和30°时,SiF2是主要的含Si产物;在入射角度等于60°和75°时,SiF是主要的含Si产物。刻蚀主要通过化学增强的物理溅射进行。  相似文献   

13.
用俄歇电子能谱仪测量在低的入射电子能量下二次电子弹性峰附近的损失结构,得到了电子能量损失谱。对于铝、三氧化二铝、铝表面吸附氧以及铝表面复盖薄氧化层的样品,其能量损失谱有明显的差别,主要是等离子损失峰的位置和强度的变化。纯铝的表面和体等离子损失能量为10.5eV和15.5eV,三氧化二铝的等离子损失峰位置移到12eV和21.5eV处;铝表面复盖薄氧化层时,其损失谱是铝和三氧化二铝损失谱的混合:铝表面吸附少量氧时,表面和体等离子损失峰的强度明显减弱,并出现与氧相联系的8eV损失峰。文中给出了不同入射电子能量下这些损失谱的变化,从中可以区分来自表面和体内的损失机理,同时对铝表面复盖薄氧化层的样品,提供了一个测量其氧化层厚度的方法。  相似文献   

14.
激光分子束外延SrTiO3薄膜退火过程中表面扩散的研究   总被引:1,自引:0,他引:1  
用激光分子束外延研究了SrTiO3同质外延时原位退火中,反射高能电子衍射(RHEED)强度的恢复--驰豫时间,导出了高真空下表面扩散的活化能为0.31 eV,与低真空下的结果相比要小许多,这反映了粒子达到基片时的能量差.对沉积不同厚度的薄膜退火研究,表明当薄膜厚度增加时,表面恢复情况减弱,而导致随后的沉积时RHEED振荡周期的改变.  相似文献   

15.
电子散射和电子透过率是影响厚膜样品扫描透射电镜成像及其检测应用的重要因素。本文根据样品材料中电子的弹性散射和非弹性散射模型,采用蒙特卡罗方法模拟了能量为100~300 keV的电子在微米级厚非晶薄膜样品中的散射过程,并计算了在扫描透射电镜明场模式下的电子透过率特性。电子透射厚样品的散射次数和出射角分布都由于样品厚度的增大而明显增大且展宽。所获得的电子透过率随样品厚度的变化规律与文献中实验报道一致。分析了入射电子能量、接收半张角及样品材料类型等参数对电子透过率的影响。结果表明电子透过率随着电子能量的提高而增大,随着样品材料的原子序数和密度的增大而减小。模拟结果还证实,部分电子经多重弹性散射而返回接收半张角会使电子透过率的减小偏离指数线性变化。  相似文献   

16.
本文采用脉冲激光沉积方法,在Si衬底上制备了ZnO薄膜。在制备好的薄膜上,用电子束蒸发沉积不同厚度的Al膜并进行快速热退火处理,系统研究了金属厚度、形貌及界面态对发光增强的影响。实验结果显示,在ZnO表面沉积一层金属薄膜时,ZnO的发光强度会降低,且随着金属厚度增加,发光强度越来越弱。当对镀有金属的样品进行退火处理后,ZnO的发光得到增强,且增强倍数在Al厚度为6nm时达到最大。这归因于退火形成的金属颗粒对金属有序表面等离激元的有效散射及退火造成的ZnO-Al界面态的变化。  相似文献   

17.
含有空气背衬层的分层多孔材料的吸声性能研究   总被引:1,自引:0,他引:1  
根据声波在介质中的传播规律,计算了声波垂直入射到含有空气背衬层的分层多孔材料吸声结构的吸声系数。以含有空气背衬层的双层泡沫铝结构为例,研究了各层泡沫铝的设计参数和空气背衬层厚度变化对吸声结构吸声系数的影响规律。研究表明:随着各层孔隙率增加、或厚度增加、或流阻率增加,双层泡沫铝空气背衬层吸声结构的吸声系数逐渐增大;在低频段增加空气背衬层厚度,吸声系数增大,且最高吸声系数表现出向低频迁移的趋势;在中频段,当增加各层孔隙率或流阻率时,没有空气背衬层的双层泡沫铝吸声结构则呈现出更好的吸声性能。合理调整各层材料的设计参数,可在较宽频段上达到满意的吸声效果。  相似文献   

18.
离子束溅射沉积Fe/Si多层膜法合成β-FeSi_2薄膜的研究   总被引:1,自引:0,他引:1  
采用离子束溅射沉积Fe/Si多层膜的方法在石英衬底上制备了β-FeSi2薄膜,研究了不同厚度比的Fe/Si多层膜对β-FeSi2薄膜的结构性能、形貌及光学性能的影响。结果表明,厚度比为Fe(2nm)/Si(7.4nm)的多层膜在退火后完全生成了β-FeSi2相,表面致密均匀,其光学带隙为0.84eV,能量为1.0eV光子的吸收系数105cm-1。  相似文献   

19.
Ar~+与氟化的Si样品相互作用机制的研究:分子动力学模拟   总被引:1,自引:0,他引:1  
采用分子动力学方法模拟了Ar+与表面含有C,F反应层的Si样品的相互作用过程,以了解Ar+与氟化的Si的作用机制。为了和相对应的实验结果做比较,选择了两种样品,表面富F样品和表面富C样品。模拟结果表明,对于表面富F样品,能清楚地看到Si的刻蚀且随着入射能量的增加Si的刻蚀增加。当入射Ar+数量到达一定程度后Si的刻蚀完全停止。对于富C样品,几乎没有发生Si的刻蚀,这是由于Si-C键对Si的刻蚀起阻碍作用。  相似文献   

20.
金石声  朱林山  苟富均  谢泉 《功能材料》2007,38(10):1590-1593,1596
应用蒙特卡诺程序SRIM对He 、Ar 、Xe 轰击SiC的微观过程进行了模拟.对不同能量(100~500eV)以及不同角度(0~85°)下He 、Ar 、Xe 轰击SiC引起的溅射率、溅射原子分布、溅射原子能量以及入射离子在SiC中的分布情况进行了分析比较.结果表明对于原子量较小的He 入射SiC所引起的溅射主要是由进入表面之下的背散射离子产生的碰撞级联造成的,溅射原子具有较高的能量;对于原子量较大的Ar 、Xe 入射所引起的溅射主要是由进入SiC内部的离子直接产生的碰撞级联产生,溅射原子的能量相对较低.随着离子入射角度的逐渐增加,SiC的溅射率逐渐增加,在70°左右达到溅射峰值,随着入射角度的继续增加,入射离子的背散射不能使碰撞级联充分扩大,反冲原子的生成效率急剧降低,导致溅射率开始急剧下降.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号