首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The conventional reliability-based multidisciplinary design optimization (RBMDO) integrates the reliability-based design optimization and multidisciplinary design optimization (MDO) directly, which leads to a triple-level nested optimization loop. Especially, the multidisciplinary reliability analysis in the middle layer dominates the whole efficiency of RBMDO. To tackle this problem, first of all, a sequential multidisciplinary reliability analysis (SMRA) approach that integrates the concurrent subspace optimization (CSSO) strategy and the performance measure approach is proposed, in which the multidisciplinary analysis, system sensitivity analysis and reliability analysis are decoupled and arranged sequentially, making a recursive loop. The multidisciplinary analysis and system sensitivity analysis provide the value and gradient information of limit-state function for reliability analysis respectively. As a result, a great number of repeated iterations of the whole reliability analysis are eliminated. Secondly, the CSSO has been integrated with the sequential optimization and reliability assessment (SORA) to decouple the triple-level nested RBMDO procedures into a sequence of cycles of deterministic MDO and multidisciplinary reliability analysis. Therefore, the expensive computation of the whole reliability analysis model in each iteration of RBMDO is avoided. And also, the CSSO is adopted in the deterministic MDO to deal with medium-scale and coupled multidisciplinary systems. The procedures of the proposed approaches are presented in detail. The effectiveness of the proposed strategies is demonstrated and verified with two design examples.  相似文献   

2.
This paper presents an efficient reliability-based multidisciplinary design optimization (RBMDO) strategy. The conventional RBMDO has tri-level loops: the first level is an optimization in the deterministic space, the second one is a reliability analysis in the probabilistic space, and the third one is the multidisciplinary analysis. Since it is computationally inefficient when high-fidelity simulation methods are involved, an efficient strategy is proposed. The strategy [named probabilistic bi-level integrated system synthesis (ProBLISS)] utilizes a single-level reliability-based design optimization (RBDO) approach, in which the reliability analysis and optimization are conducted in a sequential manner by approximating limit state functions. The single-level RBDO is associated with the BLISS formulation to solve RBMDO problems. Since both the single-level RBDO and BLISS are mainly driven by approximate models, the accuracy of models can be a critical issue for convergence. The convergence of the strategy is guaranteed by employing the trust region–sequential quadratic programming framework, which validates approximation models in the trust region radius. Two multidisciplinary problems are tested to verify the strategy. ProBLISS significantly reduces the computational cost and shows stable convergence while maintaining accuracy.  相似文献   

3.
This study presents a numerical procedure to optimize the cooling passage structure of turbine blade to enhance aerodynamic and heat transfer. Surrogate model based optimization technique is used with Navier-Stokes analysis of fluid flow and heat transfer with RNG k-epsilon transport turbulence model. The objective function is defined as a nonlinear combination of heat transfer and pressure loss with K-S function. Optimal Latin Hypercube Sampling is used to determine the training points as a mean of design of experiment. Two Loops Dynamic Optimization System (TLDOS) is performed to implement the cooling blade optimization. Blade performance improves obviously, especially the kriging model based system. Result shows a significant impact of rib positions for blade heat transfer but slightly for total pressure loss. Numerical simulation proves the feasibility and validity of the TLDOS methods.  相似文献   

4.
An approach for multi-discipline automatic optimization of the hydraulic turbine runner shape is presented. The approach accounts hydraulic efficiency, mechanical strength and the weight of the runner. In order to effectively control the strength and weight of the runner, a new parameterization of the blade thickness function is suggested. Turbine efficiency is evaluated through numerical solution of Reynolds-averaged Navier-Stokes equations, while the finite element method is used to evaluate the von Mises stress in the runner. An objective function, being the weighted sum of maximal stress and the blade volume, is suggested to account for both the strength and weight of the runner. Multi-objective genetic algorithm is used to solve the optimization problem. The suggested approach has been applied to automatic design of a Francis turbine runner. Series of three-objective optimization runs have been carried out. The obtained results clearly indicate that simultaneous account of stress and weight objectives accompanied by thickness variation allows obtaining high efficiency, light and durable turbine runners.  相似文献   

5.
涡轮气冷叶片传热管网计算是涡轮气冷叶片传热设计的重要环节,针对涡轮气冷 叶片传热设计需求,提出了涡轮气冷叶片模型传热分析数据提取的方法,具体包括计算单元划 分、流路自动判断、网络图生成和传热数据提取等算法。结合涡轮气冷叶片结构特点,使用UG Open API 工具开发了传热分析数据提取系统,实现了涡轮气冷叶片传热分析数据的提取、管理 和输出功能,以用于后续的分析计算,提高了传热设计管网计算的自动化水平,并通过实例验 证了所提出方法的可行性。  相似文献   

6.
建立发动机缸体和缸盖的动力学、燃烧和流体有限元模型,进行发动机热平衡、冷却散热和结构强度研究。创建发动机正向设计和分析方法,革新产品开发流程,自主开发热平衡计算平台。建立发动机缸内和水套传热、流体、温度场、强度的计算模型库,设计水套优化方法和流场评价标准,正向计算发动机热平衡和水套散热。通过2个应用案例,证明该平台在发动机热平衡计算和结构分析与评估中的作用。该平台可为发动机热平衡、冷却散热和结构强度的正向设计提供基础。  相似文献   

7.
To address the reliability-based multidisciplinary design optimization (RBMDO) problem under mixed aleatory and epistemic uncertainties, an RBMDO procedure is proposed in this paper based on combined probability and evidence theory. The existing deterministic multistage-multilevel multidisciplinary design optimization (MDO) procedure MDF-CSSO, which combines the multiple discipline feasible (MDF) procedure and the concurrent subspace optimization (CSSO) procedure to mimic the general conceptual design process, is used as the basic framework. In the first stage, the surrogate based MDF is used to quickly identify the promising reliable regions. In the second stage, the surrogate based CSSO is used to organize the disciplinary optimization and system coordination, which allows the disciplinary specialists to investigate and optimize the design with the corresponding high-fidelity models independently and concurrently. In these two stages, the reliability-based optimization both in the system level and the disciplinary level are computationally expensive as it entails nested optimization and uncertainty analysis. To alleviate the computational burden, the sequential optimization and mixed uncertainty analysis (SOMUA) method is used to decompose the traditional double-level reliability-based optimization problem into separate deterministic optimization and mixed uncertainty analysis sub-problems, which are solved sequentially and iteratively until convergence is achieved. By integrating SOMUA into MDF-CSSO, the Mixed Uncertainty based RBMDO procedure MUMDF-CSSO is developed. The effectiveness of the proposed procedure is testified with one simple numerical example and one MDO benchmark test problem, followed by some conclusion remarks.  相似文献   

8.
Traditional feature-based turbine blade models can match the needs of geometric modeling but could hardly meet the requirement of data extraction in 1-D heat transfer analysis. In this paper, the requirements of data extraction in 1-D heat transfer analysis are taken into consideration as well as geometric representation in parametric design process. An improved turbine blade parametric modeling method is proposed. Based on the modeling method proposed, a system structure of blade modeling process considering 1-D heat transfer analysis is devised. Eventually, a turbine blade parametric modeling system is constructed to test and verify the feasibility of the proposed modeling method and system structure. Experiments show that the blade parametric modeling method proposed can make geometric models better adapt to the specific requirements of 1-D heat transfer analysis and has certain reference value to the creation of high quality digital models.  相似文献   

9.
为提高汽轮机叶片叶根型线的设计效率和产品质量,基于接触应力约束下的枞树形叶片叶根型线设计,将传统的基于经验的设计与经典优化理论相结合,推导适合叶根型线的设计方法。采用移动渐近线法(method of moving asymptotes, MMA)进行结构拓扑优化,以某低压末级动叶片设计为例,优化前、后叶根和轮槽的VON Mises应力对比表明,所推导的方法能够快速得到所需的型线设计。该设计使得叶根与轮槽间的接触应力降低,叶片的使用寿命提高。  相似文献   

10.
基于参数化的涡轮叶片三维气动优化仿真   总被引:1,自引:0,他引:1  
为了提高涡轮叶片的设计效率,在分析已有涡轮叶片截面线参数化造型技术优缺点的基础上,基于B样条曲线实现了涡轮叶片截面线的参数化造型和参数化修改,并编写了叶片造型程序,实现了叶片流场模型的自动化生成.以某型号涡轮叶片为例,对其进行三维流场数值模拟,然后采用遗传算法和序列二次规划法算法的组合,以涡轮的气动效率为目标函数,对涡轮叶片进行了气动优化.算例结果表明文中所建立的涡轮叶片自动优化设计体系是可行的.  相似文献   

11.
在当前汽轮机的某些极限设计工况下,基于无限寿命的线弹性考核规范已经无法满足当前的工程设计要求,需要发展弹塑性强度计算方法以及有工程意义的强度评估准则,并在此基础上引入低周疲劳寿命考核方法对零部件寿命进行分析预测.对某汽轮机末级长叶片进行弹塑性有限元分析,提出将基于局部应力 应变法的低周疲劳分析理论与商用疲劳分析软件相结合的方法对叶片进行强度设计的方法和流程.结果表明:所提出的弹塑性分析以及疲劳寿命评估方法能很好地反映长叶片的实际强度,有助于进一步制定一套完善的适合工程应用的长叶片强度评估标准,从而提高叶片的设计水平.  相似文献   

12.
This paper presents the development of a structural optimization process for the design of future large thermoplastic wind turbine blades. The optimization process proposed in this paper consists of three optimization steps. The first step is a topology optimization of a short untwisted and non tapered section of the blade, with the inner volume used as the design domain. The second step is again a topology optimization, but on the first half of a blade to study the effect of non symmetry of the structure due to blade twist and taper. Results of this optimization step are then interpreted to build a shell model of the complete blade structure to perform composite size optimization based on a minimum mass objective subjected to constraints on deflection, composite strength and structural stability. Different blade models using ribs are then optimized and compared against conventional blade structure (box spar structure without ribs and single web structure without ribs). The use of ribs in wind turbine blade structures, which is more adapted to thermoplastic composite manufacturing than for thermoset composites, leads to slightly lighter blades than conventional blade structures.  相似文献   

13.
在卫星有效载荷系统研究中,实施多目标多学科优化的可行性设计。首先,分析了开展卫星有效载荷多学科设计优化的关键技术。建立了包含天线、转发器、数据传输、可靠性、成本和质量的多学科分析模型。然后,应用多目标遗传算法对某卫星有效载荷的可靠性和成本进行多目标设计优化,获得最优解集。最后,运用多学科协同优化结合遗传算法进行可靠性单目标设计优化。研究结果表明:有效载荷的多目标多学科设计优化全面考虑了多个学科之间的关系,设计人员可按需选择其满意的优化结果,大幅提高设计效率;协同优化方法有助于实现学科自治、并行设计,提高设计的灵活性和缩短设计周期。  相似文献   

14.
采用数值模拟的方法对简化后的涡轮叶片冷气通道进行了数值模拟,着重研究端壁对有错排射流冲击的冷气通道的影响.结果表明:通道内的横流把射流推向下游并阻止其冲击到靶面,横流作用对通道下游流场有很大影响;射流的冲击反卷和诱导作用在射流两侧形成方向相反的漩涡,漩涡把靶面部分高速区卷到左右侧壁,甚至达到射流孔板附近,产生较大的速度梯度;上游横流作用使射流下游形成低速区,随着横流的发展低速区逐渐减小,并向射流孔板方向偏移.  相似文献   

15.
冷气通道转接段是航空发动机涡轮叶片中的复杂曲面特征。通过对冷气通 道转接段进行特征分析,提出其建模方法,从数学上证明了该方法可实现对冷气通道的G1 光滑转接,提取关键建模参数,并编写程序实现了冷气通道转接段的参数化设计,达到了快 速建模和快速修改的目标,同时也为涡轮叶片中其他复杂特征的参数化设计提供了借鉴。  相似文献   

16.
Metal pressing process that is widely used in industries has advantages over casting process for producing large Francis turbine blades from thick plates. Prior to the pressing process, blank design is firstly performed to determine flat blanks. The traditional trial and error approach is not applicable to blade design for Francis turbines that are not standard due to hydraulic characteristics of power plant sites. The rapid development of computing technology makes it possible to obtain optimal flat blanks by numerical modelling and simulation. In this paper, inverse finite element approach is investigated for blank design and an elasto-plastic model has been built using the well-known commercial software ANSYS. Numerical simulations for blade unfolding models with thick shell elements, solid elements and shell elements have given results with negligible differences. Unfolding tests with simple geometries have been carried out and the numerical results agree well with the analytical solutions. A large and thick shape of a Francis turbine blade for a hydropower plant has been successfully unfolded by inverse FE model. Sensibility analysis shows that the middle surface of the flat blank is independent of blade thickness. For ensuring the machining of the blade after the pressing process, a new contour is obtained by extending the boundary of the flat blank provided by the numerical model. This research may provide a useful tool for optimal blank design of Francis turbine blades.  相似文献   

17.
Savsani  Vimal  Dave  Parth  Raja  Bansi D.  Patel  Vivek 《Engineering with Computers》2021,37(4):2911-2930

The present work focused on the optimization of offshore wind turbine structure which can sustain different environmental conditions and is of the least cost. Size and topology optimization is carried out for the jacket structure from the National Renewable Energy Laboratory (NREL) [used in the Offshore Code Comparison Collaboration Continuation (OC4) project] by using teaching learning-based optimization (TLBO) algorithm and genetic algorithm (GA). The optimization process is carried out in Matlab along with the time-dependent dynamic wind turbine simulation with the aerodynamic, hydrodynamic and structural forces in the fatigue, aerodynamics, structures, and turbulence code (FAST) from NREL. This is an innovative process which can be used to substitute the time-consuming construction of a wind turbine for its analysis. In this work, both static and dynamic analyses are carried out for simultaneous size and topology optimization. The forces applied to the structure are realistic in nature and fatigue analysis is carried out to ensure that the structure does not fail during its design life. This ensures that the simulation is more accurate and realistic as compared with other analysis. The results showed that the TLBO algorithm is effective compared to GA in terms of size and topology optimization. Further, the other state-of-the art algorithms from the Congress on Evolutionary Computation (CEC) such as differential evolution, LSHADE, multi-operator EA-II, effective butterfly optimizer, and unified differential evolution are also implemented and the comparative results of all the algorithms are presented.

  相似文献   

18.
实现发动机热端部件热流的精准监测对于发动机的冷却设计和可靠性提高具有重要意义,而薄膜热流计具有结构简单、不影响被测件气动外形以及对流场干扰小等特点。针对航空发动机在运行时产生的高振动及高冲击载荷下的薄膜热流计结构可靠性问题,采用有限元方法,建立薄膜热流计的有限元模型,分析了冲击以及随机振动对热流计结构可靠性的影响,并且提出了优化建议。优化后的热流计的最大位移及最大应力都明显减少,结构的可靠性明显提升,冲击振动测试以及划痕测试的结果也验证了薄膜热流计结构的合理性。  相似文献   

19.
为验证FINE/Turbo软件对高压涡轮流热耦合求解问题的准确性,将Mark Ⅱ型燃气涡轮叶片作为分析对象,选用不同的湍流模型和转捩模型进行数值模拟,得到叶片表面压力分布,B2B面的压力、温度、马赫数和湍流动能分布,叶片内部温度分布以及叶片表面传热系数分布,并与试验数据进行比较.结果表明:对于流热耦合问题,FINE/T...  相似文献   

20.
甲烷化装置是煤制天然气工艺的核心装置之一。本文采用夹点分析方法,对某煤制天然气工艺系统中甲烷化装置的反应热利用和冷却公用工程的设置进行了用能诊断和定量分析。以提高热回收品位和减少冷却公用工程用量为目标,通过调整冷热流股工艺参数,减小最小传热温差,耦合邻近工段的蒸汽需求以及重新进行冷热流股的合理匹配等方式对冷却公用工程进行优化配置。调优后,该厂全年节约费用310.7万元,增加成本投资433.3万元,投资的简单回收期为1.4年。本文的优化方法和结果对于煤制天然气工艺的节能降耗和水资源合理利用具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号