首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Enhanced oil recovery (EOR) methods are mostly based on different phenomena taking place at the interfaces between fluid-fluid and rock-fluid phases. Over the last decade, carbonated water injection (CWI) has been considered as one of the multi-objective EOR techniques to store CO2 in the hydrocarbon bearing formations as well as improving oil recovery efficiency. During CWI process, as the reservoir pressure declines, the dissolved CO2 in the oil phase evolves and gas nucleation phenomenon would occur. As a result, it can lead to oil saturation restoration and subsequently, oil displacement due to the hysteresis effect. At this condition, CO2 would act as insitu dissolved gas into the oil phase, and play the role of an artificial solution gas drive (SGD).In this study, the effect of SGD as an extra oil recovery mechanism after secondary and tertiary CWI (SCWI-TCWI) modes has been experimentally investigated in carbonate rocks using coreflood tests. The depressurization tests resulted in more than 25% and 18% of original oil in place (OOIP) because of the SGD after SCWI and TCWI tests, respectively. From the ultimate enhanced oil recovery point of view, the efficiency of SGD was observed to be more than one-third of that of CWI itself. Furthermore, the pressure drop data revealed that the system pressure depends more on the oil production pattern than water production.  相似文献   

2.
Carbonated water injection (CWI) is known as an efficient technique for both CO2 storage and enhanced oil recovery (EOR). During CWI process, CO2 moves from the water phase into the oil phase and results in oil swelling. This mechanism is considered as a reason for EOR. Viscous fingering leading to early breakthrough and leaving a large proportion of reservoir un-swept is known as an unfavorable phenomenon during flooding trials. Generally, instability at the interface due to disturbances in porous medium promotes viscous fingering phenomenon. Connate water makes viscous fingers longer and more irregular consisting of large number of tributaries leading to the ultimate oil recovery reduction. Therefore, higher in-situ water content can worsen this condition. Besides, this water can play as a barrier between oil and gas phases and adversely affect the gas diffusion, which results in EOR reduction. On the other hand, from gas storage point of view, it should be noted that CO2 solubility is not the same in the water and oil phases. In this study for a specified water salinity, the effects of different connate water saturations (Swc) on the ultimate oil recovery and CO2 storage capacity during secondary CWI are being presented using carbonate rock samples from one of Iranian carbonate oil reservoir. The results showed higher oil recovery and CO2 storage in the case of lower connate water saturation, as 14% reduction of Swc resulted in 20% and 16% higher oil recovery and CO2 storage capacity, respectively.  相似文献   

3.
The 2007 IEA's World Energy Outlook report predicts that the world's energy needs will grow by 55% between 2005 and 2030, with fossil fuels accounting for 84% of this massive projected increase in energy demand. An undesired side effect of burning fossil fuels is carbon dioxide (CO2) emission which is now widely believed to be responsible for the problem of global warming. Various strategies are being considered for addressing the increase in demand for energy and at the same time developing technologies to make energy greener by reducing CO2 emissions.One of these strategies is to ‘capture’ produced CO2 instead of releasing it into the atmosphere. Capturing CO2 and its injection in oil reservoirs can lead to improved oil recovery as well as CO2 retention and storage in these reservoirs. The technology is referred to as CCS (carbon capture and storage). Large point sources of CO2 (e.g., coal-fired power plants) are particularly good candidates for capturing large volumes of CO2. However, CO2 capture from power plants is currently very expensive. In addition to high costs of CO2 capture, the very low pressure of the flue gas (1 atm) and its low CO2 content (typically 10-15%) contribute to the high cost of CO2 capture from power plants and the subsequent compression. This makes conventional CO2 flooding (which requires very large volumes of CO2) uneconomical in many oil reservoirs around the world which would otherwise be suitable candidates for CO2 injection. Alternative strategies are therefore needed to utilize smaller sources of CO2 that are usually available around oil and gas fields and can be captured at lower costs (due to their higher pressure and higher CO2 concentration).We investigate the potential of carbonated (CO2-enriched) water injection (CWI) as an injection strategy for improving recovery from oil reservoirs with the added benefit of safe storage of CO2. The performance of CWI was investigated by conducting high-pressure flow visualization as well as coreflood experiments at reservoir conditions. The results show that CWI significantly improves oil recovery from water flooded porous media. A relatively large fraction of the injected CO2 was retained (stored) in the porous medium in the form of dissolved CO2 in water and oil. The results clearly demonstrate the huge potential of CWI as a productive way of utilizing CO2 for improving oil recovery and safe storage of potentially large cumulative quantities of CO2.  相似文献   

4.
5.
6.
7.
气驱油田采出水中大量CO_2的存在导致采出水腐蚀性增强,且造成水中悬浮物浓度增大,影响回注或排放。试验研究了含不同CO_2浓度的采出水中p H值、腐蚀速率、含油量和离子浓度等水质特性参数的变化,考察了气液比、含油量及温度等因素对气提法处理油田采出水中CO_2效果的影响。结果表明:CO_2浓度是影响油田采出水p H值、离子浓度及腐蚀速率等水质特性参数变化的重要因素;气提法去除采出水中CO_2的效果明显,升高温度、降低含油量均有利于提高污水中CO_2去除率;此外,与空气气提相比,氮气气提更有利于降低含油污水的腐蚀速率。在40℃和常压下,氮气气提44 min即可使污水p H值升高到7以上,碳钢腐蚀速率降至0.076 mm/a以下;当以氮气为载气,气液比为26∶1,温度为40℃时,含油污水中CO_2去除率可达100%,气提处理效果最佳。  相似文献   

8.
The world's dependence on heavy oil production is on the rise as the existing conventional oil reservoirs mature and their production decline. Compared to conventional oil, heavy oil is much more viscous and hence its production is much more difficult. Various thermal methods and particularly steam injection are applied in the field to heat up the oil and to help with its flow and production. However, the thermal recovery methods are very energy intensive with significant negative environmental impact including the production of large quantities of CO2. Alternative non-thermal recovery methods are therefore needed to allow heavy oil production by more environmentally acceptable methods. Injection of CO2 in heavy oil reservoirs increases oil recovery while eliminating negative impacts of thermal methods.In this paper we present the results of a series of micromodel and coreflood experiments carried out to investigate the performance of CO2 injection in an extra-heavy crude oil as a method for enhancing heavy oil recovery and at the same time storing CO2. We reveal the pore-scale interactions of CO2-heavy oil-water and quantify the volume of CO2 which can be stored in these reservoirs.The results demonstrate that CO2 injection can provide an effective and environmentally friendly alternative method for heavy oil recovery. CO2 injection can be used independently or in conjunction with thermal recovery methods to reduce their carbon footprint by injecting the CO2 generated during steam generation in the reservoirs rather than releasing it in the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号